CONSTRUCTION SPECIFICATIONS Grand Junction VA Medical Center Replace Chilled Water Lines and Sanitary Pipelines Contract No. VA259-13-C-0401 Project No. 575-14-107 REPLACE CHILLED WATER LINES & SANITARY PIPELINES GRAND JUNCTION VA MEDICAL CENTER PROJECT NO. 575-14-107 # PROJECT CONTACTS: OWNER: GRAND JUNCTION VA MEDICAL CENTER Attn: Bill Frazier 2121 North Avenue Grand Junction, CO 81501 Phone: (970)242-0731 x2005 Email: William.Frazier5@va.gov CIVIL ENGINEER: CONSTRUCTION ENGINEERING SOLUTIONS, LLC. Attn: Stephanie Nocks, P.E. 715 Roundup Drive Grand Junction, CO 81507 Phone: (970) 549-4504 Email: steph@cesolutions-llc.com MEP CONSULTANT: ACM ENGINEERING Attn: Joel Martinez, P.E. 3880 S. 8.4 Road Glade Park, CO 81523 Phone: (970) 245-7292 Email: joelmrtinez@gmail.com ISSUE DATE: 8 August 2014 THIS PAGE WAS INTENTIONALLY LEFT BLANK REPLACE CHILLED WATER LINES & SANITARY PIPELINES GRAND JUNCTION VA MEDICAL CENTER PROJECT NO. 575-14-107 # PROJECT CERTIFICATION: CIVIL ENGINEERING: Construction Engineering Solutions, LLC. MECHANICAL, ELECTRICAL and PLUMBING ENGINEERING: ACM Engineering THIS PAGE WAS INTENTIONALLY LEFT BLANK REPLACE CHILLED WATER LINES & SANITARY PIPELINES GRAND JUNCTION VA MEDICAL CENTER PROJECT NO. 575-14-107 # Section 00 01 10 TABLE OF CONTENTS | DIVISION 00 - S | SPECIAL SECTIONS | |--|---| | 00 01 15 | List of Drawing Sheets | | 00 43 23 | Alternates Form | | | | | DIVISION 01 - 0 | GENERAL REQUIREMENTS | | 01 00 00 | General Requirements | | 01 32 16.15 | Project Schedules (Small Projects - Design/Bid/Build) | | 01 33 23 | Shop Drawings, Product Data, and Samples | | 01 42 19 | Reference Standards | | 01 45 29 | Testing Laboratory Services | | 01 57 19 | Temporary Environmental Controls | | 01 74 19 | Construction Waste Management | | 01 91 00 | General Commissioning Requirements | | DT:::101 02 | G0.150.777 | | DIVISION 03 - 0 | | | 03 30 53 | (Short-Form) Cast-in-Place Concrete | | DIVISION 07 - : | THERMAL AND MOISTURE PROTECTION | | 07 84 00 | Fire Stopping | | 07 92 00 | Joint Sealants | | | | | | | | DIVISION 22 - 1 | | | 22 05 11 | Common Work Results for Plumbing | | 22 05 11
22 08 00 | Common Work Results for Plumbing Commissioning of Plumbing Systems | | 22 05 11
22 08 00
22 13 00 | Common Work Results for Plumbing
Commissioning of Plumbing Systems
Facility Sanitary and Vent Piping | | 22 05 11
22 08 00 | Common Work Results for Plumbing Commissioning of Plumbing Systems | | 22 05 11
22 08 00
22 13 00
22 14 00 | Common Work Results for Plumbing Commissioning of Plumbing Systems Facility Sanitary and Vent Piping Facility Storm Drainage | | 22 05 11
22 08 00
22 13 00
22 14 00
DIVISION 26 - 1 | Common Work Results for Plumbing Commissioning of Plumbing Systems Facility Sanitary and Vent Piping Facility Storm Drainage ELECTRICAL | | 22 05 11
22 08 00
22 13 00
22 14 00
DIVISION 26 - 1
26 05 11 | Common Work Results for Plumbing Commissioning of Plumbing Systems Facility Sanitary and Vent Piping Facility Storm Drainage ELECTRICAL Requirements for Electrical Installations | | 22 05 11
22 08 00
22 13 00
22 14 00
DIVISION 26 - 1 | Common Work Results for Plumbing Commissioning of Plumbing Systems Facility Sanitary and Vent Piping Facility Storm Drainage ELECTRICAL Requirements for Electrical Installations Low-Voltage Electrical Power Conductors and Cables | | 22 05 11
22 08 00
22 13 00
22 14 00
DIVISION 26 - 1
26 05 11
26 05 19
26 05 26 | Common Work Results for Plumbing Commissioning of Plumbing Systems Facility Sanitary and Vent Piping Facility Storm Drainage ELECTRICAL Requirements for Electrical Installations Low-Voltage Electrical Power Conductors and Cables Grounding and Bonding for Electrical Systems | | 22 05 11 22 08 00 22 13 00 22 14 00 DIVISION 26 - 1 26 05 11 26 05 19 26 05 26 26 05 33 | Common Work Results for Plumbing Commissioning of Plumbing Systems Facility Sanitary and Vent Piping Facility Storm Drainage ELECTRICAL Requirements for Electrical Installations Low-Voltage Electrical Power Conductors and Cables Grounding and Bonding for Electrical Systems Raceway and Boxes for Electrical Systems | | 22 05 11
22 08 00
22 13 00
22 14 00
DIVISION 26 - 1
26 05 11
26 05 19
26 05 26 | Common Work Results for Plumbing Commissioning of Plumbing Systems Facility Sanitary and Vent Piping Facility Storm Drainage ELECTRICAL Requirements for Electrical Installations Low-Voltage Electrical Power Conductors and Cables Grounding and Bonding for Electrical Systems Raceway and Boxes for Electrical Systems Underground Electrical Construction | | 22 05 11 22 08 00 22 13 00 22 14 00 DIVISION 26 - 1 26 05 11 26 05 19 26 05 26 26 05 33 26 05 41 26 08 00 | Common Work Results for Plumbing Commissioning of Plumbing Systems Facility Sanitary and Vent Piping Facility Storm Drainage ELECTRICAL Requirements for Electrical Installations Low-Voltage Electrical Power Conductors and Cables Grounding and Bonding for Electrical Systems Raceway and Boxes for Electrical Systems Underground Electrical Construction Commissioning of Electrical Systems | | 22 05 11 22 08 00 22 13 00 22 14 00 DIVISION 26 - 1 26 05 11 26 05 19 26 05 26 26 05 33 26 05 41 26 08 00 26 22 00 | Common Work Results for Plumbing Commissioning of Plumbing Systems Facility Sanitary and Vent Piping Facility Storm Drainage ELECTRICAL Requirements for Electrical Installations Low-Voltage Electrical Power Conductors and Cables Grounding and Bonding for Electrical Systems Raceway and Boxes for Electrical Systems Underground Electrical Construction Commissioning of Electrical Systems Low-Voltage Transformers | | 22 05 11 22 08 00 22 13 00 22 14 00 DIVISION 26 - 1 26 05 11 26 05 19 26 05 26 26 05 33 26 05 41 26 08 00 26 22 00 26 24 16 | Common Work Results for Plumbing Commissioning of Plumbing Systems Facility Sanitary and Vent Piping Facility Storm Drainage ELECTRICAL Requirements for Electrical Installations Low-Voltage Electrical Power Conductors and Cables Grounding and Bonding for Electrical Systems Raceway and Boxes for Electrical Systems Underground Electrical Construction Commissioning of Electrical Systems Low-Voltage Transformers Panelboards | | 22 05 11 22 08 00 22 13 00 22 14 00 DIVISION 26 - 1 26 05 11 26 05 19 26 05 26 26 05 33 26 05 41 26 08 00 26 22 00 26 24 16 26 27 26 | Common Work Results for Plumbing Commissioning of Plumbing Systems Facility Sanitary and Vent Piping Facility Storm Drainage ELECTRICAL Requirements for Electrical Installations Low-Voltage Electrical Power Conductors and Cables Grounding and Bonding for Electrical Systems Raceway and Boxes for Electrical Systems Underground Electrical Construction Commissioning of Electrical Systems Low-Voltage Transformers Panelboards Wiring Devices | | 22 05 11 22 08 00 22 13 00 22 14 00 DIVISION 26 - 1 26 05 11 26 05 19 26 05 26 26 05 33 26 05 41 26 08 00 26 22 00 26 24 16 | Common Work Results for Plumbing Commissioning of Plumbing Systems Facility Sanitary and Vent Piping Facility Storm Drainage ELECTRICAL Requirements for Electrical Installations Low-Voltage Electrical Power Conductors and Cables Grounding and Bonding for Electrical Systems Raceway and Boxes for Electrical Systems Underground Electrical Construction Commissioning of Electrical Systems Low-Voltage Transformers Panelboards | | 22 05 11 22 08 00 22 13 00 22 14 00 DIVISION 26 - 1 26 05 11 26 05 19 26 05 26 26 05 33 26 05 41 26 08 00 26 22 00 26 24 16 26 27 26 | Common Work Results for Plumbing Commissioning of Plumbing Systems Facility Sanitary and Vent Piping Facility Storm Drainage ELECTRICAL Requirements for Electrical Installations Low-Voltage Electrical Power Conductors and Cables Grounding and Bonding for Electrical Systems Raceway and Boxes for Electrical Systems Underground Electrical Construction Commissioning of Electrical Systems Low-Voltage Transformers Panelboards Wiring Devices Enclosed Switches and Circuit Breakers | | 22 05 11 22 08 00 22 13 00 22 14 00 DIVISION 26 - 1 26 05 11 26 05 19 26 05 26 26 05 33 26 05 41 26 08 00 26 22 00 26 24 16 26 27 26 26 29 21 | Common Work Results for Plumbing Commissioning of Plumbing Systems Facility Sanitary and Vent Piping Facility Storm Drainage ELECTRICAL Requirements for Electrical Installations Low-Voltage Electrical Power Conductors and Cables Grounding and Bonding for Electrical Systems Raceway and Boxes for Electrical Systems Underground Electrical Construction Commissioning of Electrical Systems Low-Voltage Transformers Panelboards Wiring Devices Enclosed Switches and Circuit Breakers | #### DEPARTMENT OF VETERAN AFFAIRS REPLACE CHILLED WATER LINES & SANITARY PIPELINES GRAND JUNCTION VA MEDICAL CENTER PROJECT NO. 575-14-107 # DIVISION 32 - EXTERIOR IMPROVEMENTS | 32 05 23 | Cement and Concrete for Exterior Improvements | |----------|---| | 32 12 16 | Asphalt Paving | | 32 90 00 | Planting | # DIVISION 33 - UTILITIES | 33 08 00 Commissioning | of | Site | ${\tt Utility}$ | Systems | | |------------------------|----|------|-----------------|---------|--| |------------------------|----|------|-----------------|---------|--| 33 10 01 Chilled Water Distribution # Section 00 01 15 LIST OF DRAWING SHEETS The drawings listed below accompanying this specification form a part of the
contract. | Drawing No. | <u>Title</u> | |----------------------------------|--| | GI001
GI002 | GENERAL Cover Sheet General Information Sheet | | GC001
GC002 | PHASING Critical Path Method Plan Chilled Water Lines Critical Path Method Plan Sanitary Sewer | | CD101
CS101
CU501
CU502 | CIVIL Chilled Water Lines Demo Plan Chilled Water Layout Chilled Water Details Chilled Water Details | | PD101
PS101
PL101
PL102 | PLUMBING Sanitary Demo Plan Sanitary Site Plan Sanitary Plumbing Plan Sanitary Plumbing Plan | | MI001
MS501
MS502 | MECHANICAL Mechanical Cover Sheet Chilled Water Mechanical Details Chilled Water Mechanical Details | | ES101
ES102
ES103
ES601 | ELECTRICAL Electrical Cover Sheet, Details Temp Chillers Electrical Plan, Building 1 OPA Temp Chillers Electrical Plan, Building 1 and 20 Temp Chillers Schedules, One-Lines | THIS PAGE WAS INTENTIONALLY LEFT BLANK # Section 00 43 23 ALTERNATES FORM #### 1.1 BID INFORMATION | Α. | Bidder: | |----|-----------------| | В. | Prime Contract: | - C. Project Name: Replace Chilled Water Lines and Sanitary Pipelines - D. Owner: Department of Veterans Affairs, Grand Junction, Colorado ## 1.2 BID FORM SUPPLEMENT A. This form is required to be attached to the Bid Form. #### 1.3 DESCRIPTION - A. The undersigned Bidder proposes the amount below be deducted from the Base Bid if particular alternate are accepted by Owner. Amounts listed for each alternate include costs of related coordination, modification, or adjustment. - 1. Cost-Plus-Fee Contract: Alternate price given below includes adjustments to Contractor's Fee. - B. If the alternate does not affect the Contract Sum, the Bidder shall indicate "NO CHANGE." - C. If the alternate does not affect the Work of this Contract, the Bidder shall indicate "NOT APPLICABLE." - D. The Bidder shall be responsible for determining from the Contract Documents the effects of each alternate on the Contract Time and the Contract Sum. - E. Owner reserves the right to accept or reject any alternate, in any order, and to award or amend the Contact accordingly within 60 days of the Notice of Award unless otherwise indicated in the Contract Documents. - F. Acceptance or non-acceptance of any alternates by the Owner shall have no effect on the Contract Time unless the "Schedule of Alternates" Article below provides a formatted space for the adjustment of the Contract Time. | 1
f | | | nilled Water Lines | | | | | | | | | |---------------------|-------------------|--|--|--|--------------------|--|--|--|--|--|--| | f
2 | • | | Bid Item 01: Replace Chilled Water Lines | | | | | | | | | | 2 | | | | Dollars (\$ |) | | | | | | | | | or replac | cing chilled v | vater lines and ass | ociated construction. | | | | | | | | | f | • | | | Dollars (\$ |) | | | | | | | | | or provid | ding temporary | chilled water ser | vice to Bldgs 1, 1-OP | A and 20 | | | | | | | | t | hrough us | se of rented | (at Contractor's ex | pense) temporary chil | lers. | | | | | | | | в. в | id Item (| 02: Replace Sa | anitary Pipelines | | | | | | | | | | 1 | | | | Dollars (\$ |) . | | | | | | | | 1 | | | | NOT APPLICABLE | o adjust the Contract | | | | | | | | | J | | lternate. | carenaar aays c | aujuse ene concruce | 111110 101 | | | | | | | | 1 | | DEDUCT | | NOT APPLICABLE | | | | | | | | | | | | | Dollars (\$ | | | | | | | | | 3 | . ADD | DEDUCT | calendar days t | o adjust the Contract | Time for | | | | | | | | | this al | lternate. | Ξ . Α | lternate | No. 3: Deduct | : PM/RS Building Ch | illed Water Line Exte | nsion | | | | | | | | | | | | illed Water Line Exte | | | | | | | | | 1 | . ADD | DEDUCT | NO CHANGE | | · | | | | | | | | 1 | . ADD | DEDUCT | NO CHANGE | NOT APPLICABLE | ·
). | | | | | | | | 1 | . ADD | DEDUCT | NO CHANGE | NOT APPLICABLE Dollars (\$ | ·
). | | | | | | | | 1
2
3 | . ADD ADD this al | DEDUCT DEDUCT lternate. | NO CHANGE calendar days t | NOT APPLICABLE Dollars (\$ |
).
Time for | | | | | | | | 1
2
3 | . ADD this al | DEDUCT DEDUCT lternate. No. 4: Deduct | NO CHANGE calendar days t Replacement of No | NOT APPLICABLE
_ Dollars (\$
o adjust the Contract | Time for Pipeline | | | | | | | | 1
2
3
F. A | . ADD this al | DEDUCT DEDUCT lternate. No. 4: Deduct DEDUCT | no CHANGE calendar days t Replacement of No NO CHANGE | NOT APPLICABLE Dollars (\$ o adjust the Contract | Time for Pipeline | | | | | | | | | 1 | inch, 4- | DEDITOR | 3.7.0 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 7 | MOM ADDIT | CADIE | | |-------------------|--------------------------------------|---|---|--|--|--|--|--|---| | | | | | | | | NOT APPLI | | | | | | | | | | | Dollars (| | | | | 3. | | | ca | ilendar | days to | adjust th | e Contrac | t Time io | | | | this alt | ernate. | | | | | | | | TT | 7. 7. | -ompoto N | lo 6. Del a | 04 T | T - F 10 |) inch c | | um abilla | .d | | Н. | AI | | | | | | upply/retu | | | | | | | | | itea aei | MOTICION | and surfa | ce restor | ation (Se | | | 1 | | et CS101). | | CHANCI | | NOM ADDIT | CADIE | | | | | | | | | | NOT APPLI | | | | | | | | | | | Dollars (| | | | | 3. | | | ca | ılendar | days to | adjust th | e Contrac | t Time io | | | | this alt | ernate. | | | | | | | | | | Contract | cor's exper | nse) tem | mporary
CHANGE | chiller | OT APPLICA | BLE | _• | | | 2.
3. | ADD this alt Contract proposed | DEDUCT DEDUCT cernate. cor shall provide to prov | NO ca | CHANGE alendar informate change change | chiller N days to ation re | s. | BLE
\$
e Contrac
e means a
ce. Prov |
).
It Time for
and method | | 1.5 s
A.
B. | 2.
3.
4. | ADD - ADD this alt Contract proposed informat document | DEDUCT DEDUCT cernate. cor shall place to provide provid | nse) tem NO ca provide de alter separate | CHANGE alendar informate che sheet | chiller N days to ation re nilled w and inc | s. OT APPLICA Dollars (adjust th garding th ater servi lude it wi | BLE e Contract e means a ce. Prov th the ot |
t Time for
and method
ride this
ther bid | | А. | 2.
3.
4.
4.
SuBM:
Sul | ADD ADD this alt Contract proposed informat document | DEDUCT DEDUCT DEDUCT cernate. cor shall provide to provi | nse) tem NO ca provide de alter separate LEMENT ed this | CHANGE alendar informate che sheet | chiller N days to ation re nilled w and inc | S. OT APPLICA Dollars (adjust th garding th ater servi lude it wi | BLE e Contract e means a ce. Prov th the ot, 2014 ation) |
t Time for
and method
ride this
ther bid | | Α. | 2. 3. 4. 4. Res | ADD - ADD this alt Contract proposed informat document ISSION OF spectfull omitted b | DEDUCT DEDUCT ernate. cor shall record from on a second correct cor | nse) tem NO ca provide de alter separate this this name of | CHANGE alendar informate che sheet | chiller N days to ation re nilled w and inc | s. OT APPLICA Dollars (adjust th garding th ater servi lude it wi | BLE e Contract e means a ce. Prov th the ot, 2014 ation) |
).
et Time for
and method
ride this
her bid | THIS PAGE WAS INTENTIONALLY LEFT BLANK #
SECTION 01 00 00 GENERAL REQUIREMENTS # TABLE OF CONTENTS | 1.1 GENERA | AL INTENTION | 1 | |------------|--|----| | 1.2 STATE | MENT OF BID ITEM(S) | 2 | | 1.3 SPECI | FICATIONS AND DRAWINGS FOR CONTRACTOR | 2 | | 1.4 CONST | RUCTION SECURITY REQUIREMENTS | 3 | | 1.5 FIRE : | SAFETY | 5 | | 1.6 OPERA | TIONS AND STORAGE AREAS | 7 | | 1.7 ALTER | ATIONS | 10 | | 1.8 INFEC | TION PREVENTION MEASURES | 12 | | 1.9 DISPO | SAL AND RETENTION | 14 | | | ECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, , AND IMPROVEMENTS | 14 | | 1.11 REST | ORATION | 15 | | 1.12 PHYS | ICAL DATA | 15 | | 1.13 PROF | ESSIONAL SURVEYING SERVICES | 16 | | 1.14 LAYO | UT OF WORK | 16 | | 1.15 AS-B | UILT DRAWINGS | 17 | | 1.16 USE (| OF ROADWAYS | 18 | | 1.17 TEMPO | ORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT | 18 | | 1.18 TEMP | ORARY TOILETS | 19 | | 1.19 AVAI | LABILITY AND USE OF UTILITY SERVICES | 19 | | 1.20 TEST: | S | 20 | | 1.21 INST | RUCTIONS | 21 | | 1.22 RELO | CATED EQUIPMENT AND ITEMS | 22 | | 1.23 HIST | ORIC PRESERVATION | 23 | | 1 24 VA TI | RTRIGA | 23 | # SECTION 01 00 00 GENERAL REQUIREMENTS #### 1.1 GENERAL INTENTION - A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for Replace Chilled Water Lines and Sanitary Pipelines as required by drawings and specifications. - B. Visits to the site by Bidders may be made only at the designated pre-bid meeting as listed in the solicitation. - C. Offices of Construction Engineering Solutions, 715 Roundup Drive, Grand Junction, CO 81507, as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative. - D. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access. - E. Prior to commencing work, general contractor shall provide proof that a OSHA designated "competent person" (CP) (29 CFR 1926.20(b)(2) will maintain a presence at the work site whenever the general or subcontractors are present. # F. Training: - 1. All employees of general contractor or subcontractors shall have the 30-hour OSHA Construction Safety course and other relevant competency training, as determined by RE/COR acting as the Construction Safety Officer with input from the facility Construction Safety Committee. - 2. Submit training records of all such employees for approval before the start of work. - H. VHA Directive 2011-36, Safety and Health during Construction, dated 9/22/2011 in its entirety is made a part of this section #### 1.2 STATEMENT OF BID ITEM(S) - A. BID ITEM 01(1), Replace Chilled Water Lines, including associated demolition, construction, alterations, mechanical and electrical work. - BID ITEM 01(2), Providing Temporary Chilled Water Service to Bldgs 1, 1-OPA and 20 through use of rented (at Contractor's expense) temporary chillers. - B. BID ITEM 02, Replace Sanitary Pipelines, including associated demolition, construction, and alterations. - C. ALTERNATE NO.1: Replace Concrete Chiller Pads with Road Base Chiller Pads - D. ALTERNATE NO. 2: Replace Pre-insulated Chilled Water Pipe with Field-insulated Chilled Pipe - E. ALTERNATE NO. 3: Deduct PM/RS Building Chilled Water Extension - F. ALTERNATE NO. 4: Deduct Replacement of North Sanitary Lateral - G. ALTERNATE NO. 5: Provide pricing for replacing 20 feet of additional 6-inch, 4-inch and 2-inch Sanitary Pipeline - H. ALTERNATE NO. 6: Delete 94 LF of 12-inch supply/return chilled water piping, including associated demolition and surface restoration (See Plan Sheet CS101) - I. ALTERNATE NO. 7: Provide alternate means of supplying temporary chilled water service to Bldgs 1, 1-OPA and 20 in lieu of rented (at Contractor's expense) temporary chillers # 1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR - A. AFTER AWARD OF CONTRACT, One (1) set of specifications and drawings will be furnished. - B. Additional sets of drawings may be made by the Contractor, at Contractor's expense, from reproducible digital prints furnished by the Issuing Office. ## 1.4 CONSTRUCTION SECURITY REQUIREMENTS # A. Security Plan: - The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project. - 2. The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations. # B. Security Procedures: - 1. General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site. - 2. For working outside the "regular hours" as defined in the contract, The General Contractor shall give 3 days notice to the Contracting Officer so that security arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section. - 3. No photography of VA premises is allowed without written permission of the Contracting Officer. - 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer. # C. Key Control: 1. The General Contractor shall provide duplicate keys and lock combinations to the Contracting Officer's Representative (COR) for the purpose of security inspections of every area of project including tool boxes and parked machines and take any emergency action. # D. Document Control: 1. Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the - approach to following goals and maintaining confidentiality of "sensitive information". - 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project. - 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request. - 4. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer. - 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA. - 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information". - 7. All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS). - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system. - b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed. # E. Motor Vehicle Restrictions - 1. Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies. - 2. Separate permits shall be issued for General Contractor and its employees for parking in designated areas only. #### 1.5 FIRE SAFETY - A. Applicable Publications: Publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only. - 1. American Society for Testing and Materials (ASTM): E84-2009......Surface Burning Characteristics of Building Materials 2. National Fire Protection Association (NFPA): 10-2010......Standard for Portable Fire Extinguishers 30--2008... Flammable and Combustible Liquids Code 51B-2009......Standard for Fire Prevention During Welding, Cutting and Other Hot Work 70-2011.....National Electrical Code 101-2012.....Life Safety Code 241-2009......Standard for Safeguarding Construction, Alteration, and Demolition Operations 3. Occupational Safety and Health Administration (OSHA): 29 CFR 1926.........Safety and Health Regulations for Construction - 4. VHA Directive 2005-007 - B. Fire Safety Plan: Establish and maintain a fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to COR and Facility Safety Officer for review for compliance with VHA Directive 2005-007, NFPA 101 and NFPA 241.Prior to beginning work, all employees of the contractor and/or any subcontractors shall undergo a safety briefing provided by the general contractor's competent person per OSHA requirements. This briefing shall include information on the construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, etc. Provide documentation to the COR that all construction workers have undergone contractor's safety briefing. - C. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with
NFPA 241. - D. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet). - F. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70. - G. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with COR and Facility Safety Officer. - H. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to COR and Facility Safety Officer. - I. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10. - J. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30. - K. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with COR and Facility Safety Officer. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the COR. - L. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with COR and Facility Safety Officer. - M. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with COR and Facility Safety Officer - at least 24 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work. - N. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to COR and Facility Safety Officer. - O. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas. - P. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily. - Q. Perform other construction, alteration and demolition operations in accordance with 29 CFR 1926. #### 1.6 OPERATIONS AND STORAGE AREAS - A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance. - B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed. - C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor - shall repair or pay for the repair of any damaged curbs, sidewalks, or roads. - D. Working space and space available for storing materials shall be as determined by the COR. - E. Workmen are subject to rules of Grand Junction VA Medical Center applicable to their conduct. - F. Execute work so as to interfere as little as possible with normal functioning of the Grand Junction VA Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. The Contractor shall minimize disruption to normal ambulance operations and access, and shall coordinate any unavoidable ambulance operation or access disruption with the COR a minimum of 7 days in advance. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by COR where required by limited working space. - 1. Do not store materials and equipment in other than assigned areas. - 2. Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of Veterans Affairs in quantities sufficient for not more than two work days. Provide unobstructed access to Medical Center areas required to remain in operation. - G. Phasing: To insure such executions, Contractor shall furnish the COR with a schedule of accurately estimated phasing dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the COR two weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such phasing dates to insure accomplishment of this work in successive phases mutually agreeable to the Grand Junction VA Medical Center Director, COR and Contractor, as indicated on the Phasing Plans. - H. Building(s) No.(s) 1-OPA, 1, 20 and 9 will be occupied during performance of work. - 1. Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in the Medical Centers operations will not be hindered. Contractor shall permit access to Department of Veterans Affairs personnel and patients through other construction areas which serve as routes of access to such affected areas and equipment. Coordinate alteration work in areas occupied by Department of Veterans Affairs so that Medical Center operations will continue during the construction period. - Immediate areas of alterations not mentioned in preceding Subparagraph 1 will be temporarily vacated while alterations are performed. - I. Utilities Services: Maintain existing utility services for Grand Junction VA Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR. - 1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of COR. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without the Medical Center Director's prior knowledge and written approval. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS for additional requirements. - 2. Contractor shall submit a request to interrupt any such services to COR, in writing, 48 hours in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption. - 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Grand Junction VA Medical Center. - Interruption time approved by Medical Center may occur at other than Contractor's normal working hours. - 4. Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the COR. - 5. In case of a contract construction emergency, service will be interrupted on approval of COR. Such approval will be confirmed in writing as soon as practical. - 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor. - L. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.
- M. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following: - Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles. Wherever excavation for new utility lines cross existing roads, at least one lane must be open to traffic at all times. - 2. Method and scheduling of required cutting, altering and removal of existing roads, walks and entrances must be approved by the COR. - N. Coordinate the work for this contract with other construction operations as directed by COR. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS. ## 1.7 ALTERATIONS A. Survey: Before any work is started, the Contractor shall make a thorough survey with the COR of areas of buildings in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both, to the Contracting Officer. This report shall list by rooms and spaces: - 1. Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian blinds, shades, etc., required by drawings to be either reused or relocated, or both. - 2. Shall note any discrepancies between drawings and existing conditions at site. - 3. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and COR. - B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of COR to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4 and VAAR 852.236-88). - C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and COR together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report: - 1. Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract. - D. Protection: Provide the following protective measures: - 1. Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery. - 2. Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated. - 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed. # 1.8 INFECTION PREVENTION MEASURES - A. Implement the requirements of VAMC's Infection Control Risk Assessment (ICRA) team. ICRA Group may monitor dust in the vicinity of the construction work and require the Contractor to take corrective action immediately if the safe levels are exceeded. - B. Establish and maintain a dust control program as part of the contractor's infection preventive measures in accordance with the guidelines provided by ICRA Group. Prior to start of work, prepare a plan detailing project-specific dust protection measures, including periodic status reports, and submit to COR and Facility ICRA team for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. - 1. All personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center. - C. Medical center Infection Control personnel shall monitor for airborne disease (e.g. aspergillosis) as appropriate during construction. A baseline of conditions may be established by the medical center prior to the start of work and periodically during the construction stage to determine impact of construction activities on indoor air quality. In addition: - 1. The RE and VAMC Infection Control personnel shall review pressure differential monitoring documentation to verify that pressure differentials in the construction zone and in the patient-care rooms are appropriate for their settings. The requirement for negative air pressure in the construction zone shall depend on the location and type of activity. Upon notification, the contractor shall implement corrective measures to restore proper pressure differentials as needed. - 2. In case of any problem, the medical center, along with assistance from the contractor, shall conduct an environmental assessment to find and eliminate the source. - D. In general, following preventive measures shall be adopted during construction to keep down dust and prevent mold. - 1. Dampen debris to keep down dust and provide temporary construction partitions in existing structures where directed by COR. Blank off ducts and diffusers to prevent circulation of dust into occupied areas during construction. - 2. Do not perform dust producing tasks within occupied areas without the approval of the COR. For construction in any areas that will remain jointly occupied by the medical Center and Contractor's workers, the Contractor shall: - a. Adhesive Walk-off/Carpet Walk-off Mats, minimum 600mm x 900mm (24" x 36"), shall be used at all interior transitions from the construction area to occupied medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside construction area at all times. - b. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as they are created. Transport these outside the construction area in containers with tightly fitting lids. - c. The contractor shall not haul debris through patient-care areas without prior approval of the COR and the Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down. - d. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All accidental spills must be cleaned up and dried within 12 hours. Remove and dispose of porous materials that remain damp for more than 72 hours. ## E. Final Cleanup: - 1. Upon completion of project, or as work progresses, remove all construction debris from crawlspace and entrance area. - F. Additional Infection Control Procedures: - 1. The Contractor shall follow the additional infection control procedures listed on the sanitary sewer pipeline demolition plans. #### 1.9 DISPOSAL AND RETENTION - A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows: - 1. Items not reserved shall become property of the Contractor and be removed by Contractor from Grand Junction VA Medical Center. # 1.10 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS - A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer. - B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor. ## (FAR 52.236-9) C. Refer to Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, for additional requirements on protecting vegetation, soils and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements. #### 1.11 RESTORATION - A. Remove,
cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the COR. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the COR before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified. - B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work. - C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are indicated on drawings and which are not scheduled for discontinuance or abandonment. - D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2). #### 1.12 PHYSICAL DATA A. Data and information furnished or referred to below is for the Contractor's information. The Government shall not be responsible for any interpretation of or conclusion drawn from the data or information by the Contractor. - B. Subsurface conditions were not investigated specifically for this project. - C. Soils reports from other Grand Junction VAMC projects will be made available for inspection by bidders upon request to the COR. - D. Government does not guarantee that other materials will not be encountered nor that proportions, conditions or character of several materials will not vary from those indicated by explorations. Bidders are expected to examine site of work and logs of borings; and, after investigation, decide for themselves character of materials and make their bids accordingly. Upon proper application to Department of Veterans Affairs, bidders will be permitted to make subsurface explorations of their own at site. #### 1.13 PROFESSIONAL SURVEYING SERVICES A registered professional land surveyor or registered civil engineer whose services are retained and paid for by the Contractor shall perform services specified herein and in other specification sections. The Contractor shall certify that the land surveyor or civil engineer is not one who is a regular employee of the Contractor, and that the land surveyor or civil engineer has no financial interest in this contract. #### 1.14 LAYOUT OF WORK A. The Contractor shall lay out the work from Government established base lines and bench marks, indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them. If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor. (FAR 52.236-17) - B. Establish and plainly mark utility alignments, locations and elevations of associated structures, and such other lines and grades that are reasonably necessary to properly assure that location, orientation, and elevations established for project elements are in accordance with lines and elevations shown on contract drawings. - C. Following completion of general mass excavation and before any other permanent work is performed, establish and plainly mark (through use of appropriate batter boards or other means) sufficient additional survey control points or system of points as may be necessary to assure proper alignment, orientation, and grade of all major features of work. Survey shall include, but not be limited to, location of lines and grades of footings, exterior walls, center lines of columns in both directions, major utilities and elevations of floor slabs: - 1. Such additional survey control points or system of points thus established shall be checked and certified by a registered land surveyor or registered civil engineer. Furnish such certification to the COR before any work (such as footings, floor slabs, columns, walls, utilities and other major controlling features) is placed. - D. Contractor shall furnish to the COR certificates from a registered land surveyor or registered civil engineer that the following work is complete in every respect as required by contract drawings. - 1. Lines and elevations of sewers and of all outside distribution systems. - 2. Lines and elevations of roads, streets, parking lots, and project structures. - E. Whenever changes from contract drawings are made in line or grading requiring certificates, record such changes on a reproducible drawing bearing the registered land surveyor or registered civil engineer seal, and forward these drawings upon completion of work to COR. - F. The Contractor shall perform the surveying and layout work of this and other articles and specifications in accordance with the provisions of Article "Professional Surveying Services". #### 1.15 AS-BUILT DRAWINGS A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications. - B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the COR's review, as often as requested. - C. Contractor shall deliver two approved completed sets of as-built drawings to the COR within 15 calendar days after each completed phase and after the acceptance of the project by the COR. - D. Paragraphs A, B, & C shall also apply to all shop drawings. #### 1.16 USE OF ROADWAYS - A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the COR, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges. - B. When new permanent roads are to be a part of this contract, Contractor may construct them immediately for use to facilitate building operations. These roads may be used by all who have business thereon within zone of building operations. - C. When certain buildings (or parts of certain buildings) are required to be completed in advance of general date of completion, all roads leading thereto must be completed and available for use at time set for completion of such buildings or parts thereof. # 1.17 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT - A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to compliance with the following provisions: - Permission to use each unit or system must be given by COR. If the equipment is not installed and maintained in accordance with the following provisions, the COR will withdraw permission for use of the equipment. - 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces. - 3. Units shall be properly lubricated, balanced, and aligned. Vibrations must be eliminated. - 4. Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage. - 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system. - 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government. - B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government. - C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections. ####
1.18 TEMPORARY TOILETS A. Provide where directed, (for use of all Contractor's workmen) ample temporary sanitary toilet accommodations with suitable sewer and water connections; or, when approved by COR, provide suitable dry closets where directed. Keep such places clean and free from flies, and all connections and appliances connected therewith are to be removed prior to completion of contract, and premises left perfectly clean. # 1.19 AVAILABILITY AND USE OF UTILITY SERVICES A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The amount to be paid by the Contractor for - chargeable electrical services shall be the prevailing rates charged to the Government. The Contractor shall carefully conserve any utilities furnished without charge. - B. The Contractor, at Contractor's expense and in a workmanlike manner satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia. - C. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. - D. Electricity (for Construction and Testing): Furnish all temporary electric services. - 1. Obtain electricity by connecting to the Medical Center electrical distribution system. Electricity for all uses is available at no cost to the Contractor. - E. Water (for Construction and Testing): Furnish temporary water service. - 1. Obtain water by connecting to the Medical Center water distribution system. Provide reduced pressure backflow preventer at each connection. Water is available at no cost to the Contractor. - 2. Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes will be cause for revocation (at COR's discretion) of use of water from Medical Center's system. # 1.20 TESTS - A. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested. - B. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests. - C. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire complex which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a complex which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components. - D. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably short period of time during which operating and environmental conditions remain reasonably constant. - E. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system. # 1.21 INSTRUCTIONS - A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified. - B. Manuals: Maintenance and operating manuals and one compact disc (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the COR coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted. C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed instructions to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the COR and shall be considered concluded only when the COR is satisfied in regard to complete and thorough coverage. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the COR, does not demonstrate sufficient qualifications in accordance with requirements for instructors above. # 1.22 RELOCATED EQUIPMENT AND ITEMS - A. Contractor shall disconnect, dismantle as necessary, remove and reinstall in new location, all existing equipment and items indicated by symbol "R" or otherwise shown to be relocated by the Contractor. - B. Perform relocation of such equipment or items at such times and in such a manner as directed by the COR. - C. Suitably cap existing service lines, such as steam, condensate return, water, drain, gas, air, vacuum and/or electrical, whenever such lines are disconnected from equipment to be relocated. Remove abandoned lines in finished areas and cap as specified herein before under paragraph "Abandoned Lines". - D. Provide all mechanical and electrical service connections, fittings, fastenings and any other materials necessary for assembly and installation of relocated equipment; and leave such equipment in proper operating condition. E. All service lines such as noted above for relocated equipment shall be in place at point of relocation ready for use before any existing equipment is disconnected. Make relocated existing equipment ready for operation or use immediately after reinstallation. #### 1.23 HISTORIC PRESERVATION Where the Contractor or any of the Contractor's employees, prior to, or during the construction work, are advised of or discover any possible archeological, historical and/or cultural resources, the Contractor shall immediately notify the COR verbally, and then with a written follow up. ### 1.24 VA TRIRIGA CPMS VA contractors, selected by award to perform work, are required to get access to the VA TRIRIGA CPMS. The TRIRIGA CPMS is the management and collaborative environment that the VA uses for all Major, Minor and Non-Recurring Maintenance (NRM) projects within the Office of Construction & Facilities Management (CFM), Veterans Health Administration (VHA), National Cemetery Administration (NCA), and the Veterans Benefits Administration (VBA). The contractor is solely responsible for acquiring access to the VA TRIRIGA CPMS. To gain access to the VA TRIRIGA CPMS the contractor is encouraged to follow the licensing process outline as specified below: - A. Requirement: TRIRIGA is the management and collaborative environment that VA uses for all construction projects. VA requires its contractors to procure TRIRIGA access as part of the cost of performance for a VA construction related contract. - B. Access Request and Payment can be made through the following URL https://valicensing.oncfi.com/ Inquiries or to request additional services, contact the following: Craig Alsheimer, Federal Account Manager Computerized Facility Integrations, LLC 18000 West Nine Mile Road Suite 700 Southfield, MI 48075 Email: calsheimer@gocfi.com Phone: 248-557-4234 Extension 6010; 410-292-7006 #### C. Process: - 1. Once the contractor has been notified by VA of the award and a unique contract number, the contractor can enter a request for access to TRIRIGA at URL https://valicensing.oncfi.com/ - 2. CFI will process the request for access and payment. CFI will create the USER ID and a password. Security provisions required to align the contractor to the Contract Number will be entered and an email will be generated and submitted to the requestor. - 3. CFI will also provide standard terms and conditions related
to the transaction and use agreement. - - - E N D - - - THIS PAGE WAS INTENTIONALLY LEFT BLANK # SECTION 01 32 16.15 PROJECT SCHEDULES (SMALL PROJECTS - DESIGN/BID/BUILD) #### PART 1- GENERAL #### 1.1 DESCRIPTION: A. The Contractor shall develop a Critical Path Method (CPM) plan and schedule demonstrating fulfillment of the contract requirements (Project Schedule), and shall keep the Project Schedule up-to-date in accordance with the requirements of this section and shall utilize the plan for scheduling, coordinating and monitoring work under this contract (including all activities of subcontractors, equipment vendors and suppliers). Conventional Critical Path Method (CPM) technique shall be utilized to satisfy both time and cost applications. #### 1.2 CONTRACTOR'S REPRESENTATIVE: - A. The Contractor shall designate an authorized representative responsible for the Project Schedule including preparation, review and progress reporting with and to the Contracting Officer's Representative (COR). - B. The Contractor's representative shall have direct project control and complete authority to act on behalf of the Contractor in fulfilling the requirements of this specification section. - C. The Contractor's representative shall have the option of developing the project schedule within their organization or to engage the services of an outside consultant. If an outside scheduling consultant is utilized, Section 1.3 of this specification will apply. #### 1.3 CONTRACTOR'S CONSULTANT: - A. The Contractor shall submit a qualification proposal to the COR, within 10 days of bid acceptance. The qualification proposal shall include: - 1. The name and address of the proposed consultant. - 2. Information to show that the proposed consultant has the qualifications to meet the requirements specified in the preceding paragraph. - 3. A representative sample of prior construction projects, which the proposed consultant has performed complete project scheduling services. These representative samples shall be of similar size and scope. - B. The Contracting Officer has the right to approve or disapprove the proposed consultant, and will notify the Contractor of the VA decision within seven calendar days from receipt of the qualification proposal. In case of disapproval, the Contractor shall resubmit another consultant within 10 calendar days for renewed consideration. The Contractor shall have their scheduling consultant approved prior to submitting any schedule for approval. # 1.4 COMPUTER PRODUCED SCHEDULES - A. The contractor shall provide monthly, to the Department of Veterans Affairs (VA), all computer-produced time/cost schedules and reports generated from monthly project updates. This monthly computer service will include: three copies of up to five different reports (inclusive of all pages) available within the user defined reports of the scheduling software approved by the Contracting Officer; a hard copy listing of all project schedule changes, and associated data, made at the update and an electronic file of this data; and the resulting monthly updated schedule in PDM format. These must be submitted with and substantively support the contractor's monthly payment request and the signed look ahead report. The COR shall identify the five different report formats that the contractor shall provide. - B. The contractor shall be responsible for the correctness and timeliness of the computer-produced reports. The Contractor shall also responsible for the accurate and timely submittal of the updated project schedule and all CPM data necessary to produce the computer reports and payment request that is specified. - C. The VA will report errors in computer-produced reports to the Contractor's representative within ten calendar days from receipt of reports. The Contractor shall reprocess the computer-produced reports when requested by the Contracting Officer's representative, to correct errors which affect the payment and schedule for the project. #### 1.5 THE COMPLETE PROJECT SCHEDULE SUBMITTAL A. Within 45 calendar days after receipt of Notice to Proceed, the Contractor shall submit for the Contracting Officer's review; three copies of the interim schedule on sheets of paper 11 x 17 inches and an electronic file in the previously approved CPM schedule program. The submittal shall also include three copies of a computer-produced activity/event ID schedule showing project duration; phase completion dates; and other data, including event cost. Each activity/event on the computer-produced schedule shall contain as a minimum, but not limited to, activity/event ID, activity/event description, duration, budget amount, early start date, early finish date, late start date, late finish date and total float. Work activity/event relationships shall be restricted to finish-to-start or start-to-start without lead or lag constraints. Activity/event date constraints, not required by the contract, will not be accepted unless submitted to and approved by the Contracting Officer. The contractor shall make a separate written detailed request to the Contracting Officer identifying these date constraints and secure the Contracting Officer's written approval before incorporating them into the network diagram. The Contracting Officer's separate approval of the Project Schedule shall not excuse the contractor of this requirement. Logic events (non-work) will be permitted where necessary to reflect proper logic among work events, but must have zero duration. The complete working schedule shall reflect the Contractor's approach to scheduling the complete project. The final Project Schedule in its original form shall contain no contract changes or delays which may have been incurred during the final network diagram development period and shall reflect the entire contract duration as defined in the bid documents. These changes/delays shall be entered at the first update after the final Project Schedule has been approved. The Contractor should provide their requests for time and supporting time extension analysis for contract time as a result of contract changes/delays, after this update, and in accordance with Article, ADJUSTMENT OF CONTRACT COMPLETION. - D. Within 30 calendar days after receipt of the complete project interim Project Schedule and the complete final Project Schedule, the Contracting Officer or his representative, will do one or both of the following: - 1. Notify the Contractor concerning his actions, opinions, and objections. - 2. A meeting with the Contractor at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 14 calendar days after the joint review, the Contractor shall revise and shall submit three copies of the revised Project Schedule, three copies of the revised computer-produced activity/event ID schedule and a revised electronic file as specified by the Contracting Officer. The revised submission will be reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved. - E. The approved baseline schedule and the computer-produced schedule(s) generated there from shall constitute the approved baseline schedule until subsequently revised in accordance with the requirements of this section. - F. The Complete Project Schedule shall contain approximately 50 work activities/events. #### 1.6 WORK ACTIVITY/EVENT COST DATA - A. The Contractor shall cost load all work activities/events except procurement activities. The cumulative amount of all cost loaded work activities/events (including alternates) shall equal the total contract price. Prorate overhead, profit and general conditions on all work activities/events for the entire project length. The contractor shall generate from this information cash flow curves indicating graphically the total percentage of work activity/event dollar value scheduled to be in place on early finish, late finish. These cash flow curves will be used by the Contracting Officer to assist him in determining approval or disapproval of the cost loading. Negative work activity/event cost data will not be acceptable, except on VA issued contract changes. - B. The Contractor shall cost load work activities/events for guarantee period services, test, balance and adjust various systems in accordance with the provisions in Article, FAR 52.232 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS). - C. In accordance with FAR 52.236 1 (PERFORMANCE OF WORK BY THE CONTRACTOR) and VAAR 852.236 - 72 (PERFORMANCE OF WORK BY THE CONTRACTOR), the Contractor shall submit, simultaneously with the cost per work activity/event of the construction schedule required by this Section, a responsibility code for all activities/events of the project for which the Contractor's forces will perform the work. - D. The Contractor shall cost load work activities/events for all BID ITEMS including ASBESTOS ABATEMENT. The sum of each BID ITEM work shall equal the value of the bid item in the Contractors' bid. ### 1.7 PROJECT SCHEDULE REQUIREMENTS - A. Show on the project schedule the sequence of work activities/events required for complete performance of all items of work. The Contractor Shall: - 1. Show activities/events as: - a. Contractor's time required for submittal of shop drawings, templates, fabrication, delivery and similar pre-construction work. - b. Contracting Officer's and Architect-Engineer's review and approval of shop drawings, equipment schedules, samples, template, or similar items. - c. Interruption of VA Facilities utilities, delivery of Government furnished equipment, and rough-in drawings, project phasing and any other specification requirements. - d. Test, balance and adjust various systems and pieces of equipment, maintenance and operation manuals, instructions and preventive maintenance tasks. - e. VA inspection and acceptance activity/event with a
minimum duration of five work days at the end of each phase and immediately preceding any VA move activity/event required by the contract phasing for that phase. - 2. Show not only the activities/events for actual construction work for each trade category of the project, but also trade relationships to indicate the movement of trades from one area, floor, or building, to another area, floor, or building, for at least five trades who are performing major work under this contract. - 3. Break up the work into activities/events of a duration no longer than 20 work days each or one reporting period, except as to non-construction activities/events (i.e., procurement of materials, delivery of equipment, concrete and asphalt curing) and any other activities/events for which the COTR may approve the showing of a longer duration. The duration for VA approval of any required submittal, shop drawing, or other submittals will not be less than 20 work days. - 4. Describe work activities/events clearly, so the work is readily identifiable for assessment of completion. Activities/events labeled "start," "continue," or "completion," are not specific and will not be allowed. Lead and lag time activities will not be acceptable. - 5. The schedule shall be generally numbered in such a way to reflect either discipline, phase or location of the work. - B. The Contractor shall submit the following supporting data in addition to the project schedule: - 1. The appropriate project calendar including working days and holidays. - 2. The planned number of shifts per day. - 3. The number of hours per shift. - Failure of the Contractor to include this data shall delay the review of the submittal until the Contracting Officer is in receipt of the missing data. - C. To the extent that the Project Schedule or any revised Project Schedule shows anything not jointly agreed upon, it shall not be deemed to have been approved by the COR. Failure to include any element of work required for the performance of this contract shall not excuse the Contractor from completing all work required within any applicable - completion date of each phase regardless of the COR's approval of the Project Schedule. - D. Compact Disk Requirements and CPM Activity/Event Record Specifications: Submit to the VA an electronic file(s) containing one file of the data required to produce a schedule, reflecting all the activities/events of the complete project schedule being submitted. #### 1.8 PAYMENT TO THE CONTRACTOR: - A. Monthly, the contractor shall submit the AIA application and certificate for payment documents G702 & G703 reflecting updated schedule activities and cost data in accordance with the provisions of the following Article, PAYMENT AND PROGRESS REPORTING, as the basis upon which progress payments will be made pursuant to Article, FAR 52.232 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS). The Contractor shall be entitled to a monthly progress payment upon approval of estimates as determined from the currently approved updated project schedule. Monthly payment requests shall include: a listing of all agreed upon project schedule changes and associated data; and an electronic file (s) of the resulting monthly updated schedule. - B. Approval of the Contractor's monthly Application for Payment shall be contingent, among other factors, on the submittal of a satisfactory monthly update of the project schedule. # 1.9 PAYMENT AND PROGRESS REPORTING - A. Monthly schedule update meetings will be held on dates mutually agreed to by the COR and the Contractor. Contractor and their CPM consultant (if applicable) shall attend all monthly schedule update meetings. The Contractor shall accurately update the Project Schedule and all other data required and provide this information to the COR three work days in advance of the schedule update meeting. Job progress will be reviewed to verify: - 1. Actual start and/or finish dates for updated/completed activities/events. - 2. Remaining duration for each activity/event started, or scheduled to start, but not completed. - 3. Logic, time and cost data for change orders, and supplemental agreements that are to be incorporated into the Project Schedule. - 4. Changes in activity/event sequence and/or duration which have been made, pursuant to the provisions of following Article, ADJUSTMENT OF CONTRACT COMPLETION. - 5. Completion percentage for all completed and partially completed activities/events. - 6. Logic and duration revisions required by this section of the specifications. - 7. Activity/event duration and percent complete shall be updated independently. - B. After completion of the joint review, the contractor shall generate an updated computer-produced calendar-dated schedule and supply the Contracting Officer's representative with reports in accordance with the Article, COMPUTER PRODUCED SCHEDULES, specified. - C. After completing the monthly schedule update, the contractor's representative or scheduling consultant shall rerun all current period contract change(s) against the prior approved monthly project schedule. The analysis shall only include original workday durations and schedule logic agreed upon by the contractor and resident engineer for the contract change(s). When there is a disagreement on logic and/or durations, the Contractor shall use the schedule logic and/or durations provided and approved by the resident engineer. After each rerun update, the resulting electronic project schedule data file shall be appropriately identified and submitted to the VA in accordance to the requirements listed in articles 1.4 and 1.7. This electronic submission is separate from the regular monthly project schedule update requirements and shall be submitted to the resident engineer within fourteen (14) calendar days of completing the regular schedule update. Before inserting the contract changes durations, care must be taken to ensure that only the original durations will be used for the analysis, not the reported durations after progress. In addition, once the final network diagram is approved, the contractor must recreate all manual progress payment updates on this approved network diagram and associated reruns for contract changes in each of these update periods as outlined above for regular update periods. This will require detailed record keeping for each of the manual progress payment updates. - D. Following approval of the CPM schedule, the VA, the General Contractor, its approved CPM Consultant, RE office representatives, and all subcontractors needed, as determined by the SRE, shall meet to discuss the monthly updated schedule. The main emphasis shall be to address work activities to avoid slippage of project schedule and to identify any necessary actions required to maintain project schedule during the reporting period. The Government representatives and the Contractor should conclude the meeting with a clear understanding of those work and administrative actions necessary to maintain project schedule status during the reporting period. This schedule coordination meeting will occur after each monthly project schedule update meeting utilizing the resulting schedule reports from that schedule update. If the project is behind schedule, discussions should include ways to prevent further slippage as well as ways to improve the project schedule status, when appropriate. #### 1.10 RESPONSIBILITY FOR COMPLETION - A. If it becomes apparent from the current revised monthly progress schedule that phasing or contract completion dates will not be met, the Contractor shall execute some or all of the following remedial actions: - 1. Increase construction manpower in such quantities and crafts as necessary to eliminate the backlog of work. - 2. Increase the number of working hours per shift, shifts per working day, working days per week, the amount of construction equipment, or any combination of the foregoing to eliminate the backlog of work. - 3. Reschedule the work in conformance with the specification requirements. - B. Prior to proceeding with any of the above actions, the Contractor shall notify and obtain approval from the COTR for the proposed schedule changes. If such actions are approved, the representative schedule revisions shall be incorporated by the Contractor into the Project Schedule before the next update, at no additional cost to the Government # 1.11 CHANGES TO THE SCHEDULE - A. Within 30 calendar days after VA acceptance and approval of any updated project schedule, the Contractor shall submit a revised electronic file (s) and a list of any activity/event changes including predecessors and successors for any of the following reasons: - 1. Delay in completion of any activity/event or group of activities/events, which may be involved with contract changes, strikes, unusual weather, and other delays will not relieve the Contractor from the requirements specified unless the conditions are shown on the CPM as the direct cause for delaying the project beyond the acceptable limits. - 2. Delays in submittals, or deliveries, or work stoppage are encountered which make rescheduling of the work necessary. - 3. The schedule does not represent the actual prosecution and progress of the project. - 4. When there is, or has been, a substantial revision to the activity/event costs regardless of the cause for these revisions. - B. CPM revisions made under this paragraph which affect the previously approved computer-produced schedules for Government furnished equipment, vacating of areas by the VA Facility, contract phase(s) and sub phase(s), utilities furnished by the Government to the Contractor, or any other previously contracted item, shall be furnished in writing to the Contracting Officer for approval. - C. Contracting Officer's approval for the revised project schedule and all relevant data is contingent upon compliance with all other paragraphs of this
section and any other previous agreements by the Contracting Officer or the VA representative. - D. The cost of revisions to the project schedule resulting from contract changes will be included in the proposal for changes in work as specified in FAR 52.243 4 (Changes) and VAAR 852.236 88 (Changes Supplemental), and will be based on the complexity of the revision or contract change, man hours expended in analyzing the change, and the total cost of the change. - E. The cost of revisions to the Project Schedule not resulting from contract changes is the responsibility of the Contractor. #### 1.12 ADJUSTMENT OF CONTRACT COMPLETION - A. The contract completion time will be adjusted only for causes specified in this contract. Request for an extension of the contract completion date by the Contractor shall be supported with a justification, CPM data and supporting evidence as the COR may deem necessary for determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof based on revised activity/event logic, durations (in work days) and costs is obligatory to any approvals. The schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved in this request. The Contracting Officer's determination as to the total number of days of contract extension will be based upon the current computer-produced calendar-dated schedule for the time period in question and all other relevant information. - B. Actual delays in activities/events which, according to the computer-produced calendar-dated schedule, do not affect the extended and predicted contract completion dates shown by the critical path in the network, will not be the basis for a change to the contract completion date. The Contracting Officer will within a reasonable time after receipt of such justification and supporting evidence, review the facts - and advise the Contractor in writing of the Contracting Officer's decision. - C. The Contractor shall submit each request for a change in the contract completion date to the Contracting Officer in accordance with the provisions specified under FAR 52.243 4 (Changes) and VAAR 852.236 88 (Changes Supplemental). The Contractor shall include, as a part of each change order proposal, a sketch showing all CPM logic revisions, duration (in work days) changes, and cost changes, for work in question and its relationship to other activities on the approved network diagram. - D. All delays due to non-work activities/events such as RFI's, WEATHER, STRIKES, and similar non-work activities/events shall be analyzed on a month by month basis. - - - E N D - - - # SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES - 1.1 Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS. - 1.2 For the purposes of this contract, samples (including laboratory samples to be tested), test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS. - 1.3 Submit for approval, all of the items specifically mentioned under the separate sections of the specification, with information sufficient to evidence full compliance with contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless: - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or; - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or; - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government. - 1.4 Forward submittals in sufficient time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of contract-required items. Delays attributable to untimely and rejected submittals (including any laboratory samples to be tested) will not serve as a basis for extending contract time for completion. - 1.5 Submittals will be reviewed for compliance with contract requirements by Architect-Engineer, and action thereon will be taken by Contracting Officer's Representative (COR) on behalf of the Contracting Officer. - 1.6 Upon receipt of submittals, Architect-Engineer will assign a file number thereto. Contractor, in any subsequent correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals. - 1.7 The Government reserves the right to require additional submittals, whether or not particularly mentioned in this contract. If additional submittals beyond those required by the contract are furnished pursuant to request therefor by Contracting Officer, adjustment in contract price and time will be made in accordance with Articles titled CHANGES (FAR 52.243-4) and CHANGES - SUPPLEMENT (VAAR 852.236-88) of the GENERAL CONDITIONS. - 1.8 Schedules called for in specifications and shown on shop drawings shall be submitted for use and information of Department of Veterans Affairs and Architect-Engineer. However, the Contractor shall assume responsibility for coordinating and verifying schedules. The Contracting Officer and Architect- Engineer assumes no responsibility for checking schedules or layout drawings for exact sizes, exact numbers and detailed positioning of items. - 1.9 Submittals must be submitted by Contractor only and shipped prepaid. Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals. - A. Submit samples in single units unless otherwise specified. Submit shop drawings, schedules, manufacturers' literature and data, and certificates in quadruplicate, except where a greater number is specified. - B. Submittals will receive consideration only when covered by a transmittal letter signed by Contractor. Letter shall be sent via first class mail or shall be sent via email and shall contain the list of items, name of Medical Center, name of Contractor, contract number, applicable specification paragraph numbers, applicable drawing numbers (and other information required for exact identification of location for each item), manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by specifications for particular item being furnished. In addition, catalogs shall be marked to indicate specific items submitted for approval. - 1. A copy of letter must be enclosed with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only. - 2. Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical Center, name of Contractor, manufacturer, brand, contract number and ASTM or Federal Specification Number as applicable and location(s) on project. - 3. Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor. - C. In addition to complying with the applicable requirements specified in preceding Article 1.9, samples which are required to have Laboratory Tests (those preceded by symbol "LT" under the separate sections of the specification shall be tested, at the expense of Contractor, in a commercial laboratory approved by Contracting Officer. - 1. Laboratory shall furnish Contracting Officer with a certificate stating that it is fully equipped and qualified to perform intended work, is fully acquainted with specification requirements and intended use of materials and is an independent establishment in no way connected with organization of Contractor or with manufacturer or supplier of materials to be tested. - Certificates shall also set forth a list of comparable projects upon which laboratory has performed similar functions during past five years. - 3. Samples and laboratory tests shall be sent directly to approved commercial testing laboratory. - 4. Contractor shall send a copy of transmittal letter to both COR and to Architect-Engineer simultaneously with submission of material to a commercial testing laboratory. - 5. Laboratory test reports shall be sent directly to COR for appropriate action - 6. Laboratory reports shall list contract specification test requirements and a comparative list of the laboratory test results. When tests show that the material meets specification requirements, the laboratory shall so certify on test report. - 7. Laboratory test reports shall also include a recommendation for approval or disapproval of tested item. - D. If submittal samples have been disapproved, resubmit new samples as soon as possible after notification of disapproval. Such new samples shall be marked "Resubmitted Sample" in addition to containing other previously specified information required on label and in transmittal letter. - E. Approved samples will be kept on file by the COR at the site until completion of contract, at which time such samples will be delivered to Contractor as Contractor's property. Where noted in technical sections of specifications, approved samples in good condition may be used in their proper locations in contract work. At completion of contract, samples that are not approved will be returned to Contractor only upon request and at Contractor's expense. Such request should be made prior to completion of the contract. Disapproved samples that are not requested for return by Contractor will be discarded after completion of contract. - F. Submittal drawings (shop, erection or setting
drawings) and schedules, required for work of various trades, shall be checked before submission by technically qualified employees of Contractor for accuracy, completeness and compliance with contract requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check. - 1. For each drawing required, submit one legible photographic paper reproducible. - 2. Reproducible shall be full size. - 3. Each drawing shall have marked thereon, proper descriptive title, including Medical Center location, project number, manufacturer's number, reference to contract drawing number, detail Section Number, and Specification Section Number. - 4. A space 120 mm by 125 mm (4-3/4) by 5 inches) shall be reserved on each drawing to accommodate approval or disapproval stamp. - 5. Submit drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment. - 6. One reproducible print of approved or disapproved shop drawings will be forwarded to Contractor. - 7. When work is directly related and involves more than one trade, shop drawings shall be submitted to Architect-Engineer under one cover. - 1.10 Samples (except laboratory samples), shop drawings, test reports, certificates and manufacturers' literature and data, shall be submitted for approval to Construction Engineering Solutions, LLC. 715 Roundup Drive Grand Junction, CO 81507 1.11 At the time of transmittal to the Architect-Engineer, the Contractor shall also send a copy of the complete submittal directly to the COR. - - - E N D - - - # SECTION 01 42 19 REFERENCE STANDARDS #### PART 1 - GENERAL #### 1.1 DESCRIPTION This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings. # 1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998) - A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978. - B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee. # 1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988) The specifications and standards cited in this solicitation can be examined at the following location: DEPARMENT OF VETERANS AFFAIRS Office of Construction & Facilities Management Facilities Quality Service (00CFM1A) 425 Eye Street N.W, (sixth floor) Washington, DC 20001 Telephone Numbers: (202) 632-5249 or (202) 632-5178 Between 9:00 AM - 3:00 PM # 1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988) The specifications cited in this solicitation may be obtained from the associations or organizations listed below. AA Aluminum Association Inc. http://www.aluminum.org AABC Associated Air Balance Council http://www.aabchq.com AAMA American Architectural Manufacturer's Association http://www.aamanet.org AAN American Nursery and Landscape Association http://www.anla.org AASHTO American Association of State Highway and Transportation Officials http://www.aashto.org AATCC American Association of Textile Chemists and Colorists http://www.aatcc.org ACGIH American Conference of Governmental Industrial Hygienists http://www.acgih.org ACI American Concrete Institute http://www.aci-int.net ACPA American Concrete Pipe Association http://www.concrete-pipe.org ACPPA American Concrete Pressure Pipe Association http://www.acppa.org ADC Air Diffusion Council http://flexibleduct.org AGA American Gas Association http://www.aga.org AGC Associated General Contractors of America http://www.agc.org AGMA American Gear Manufacturers Association, Inc. http://www.agma.org MAHA Association of Home Appliance Manufacturers http://www.aham.org AISC American Institute of Steel Construction http://www.aisc.org AISI American Iron and Steel Institute http://www.steel.org AITC American Institute of Timber Construction http://www.aitc-glulam.org AMCA Air Movement and Control Association, Inc. http://www.amca.org ANLA American Nursery & Landscape Association http://www.anla.org ANSI American National Standards Institute, Inc. http://www.ansi.org APA The Engineered Wood Association http://www.apawood.org ARI Air-Conditioning and Refrigeration Institute http://www.ari.org ASAE American Society of Agricultural Engineers http://www.asae.org ASCE American Society of Civil Engineers http://www.asce.org ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers http://www.ashrae.org ASME American Society of Mechanical Engineers http://www.asme.org ASSE American Society of Sanitary Engineering http://www.asse-plumbing.org ASTM American Society for Testing and Materials http://www.astm.org AWI Architectural Woodwork Institute http://www.awinet.org AWS American Welding Society http://www.aws.org AWWA American Water Works Association http://www.awwa.org BHMA Builders Hardware Manufacturers Association http://www.buildershardware.com BIA Brick Institute of America http://www.bia.org CAGI Compressed Air and Gas Institute http://www.cagi.org CGA Compressed Gas Association, Inc. http://www.cganet.com CI The Chlorine Institute, Inc. http://www.chlorineinstitute.org CISCA Ceilings and Interior Systems Construction Association http://www.cisca.org CISPI Cast Iron Soil Pipe Institute http://www.cispi.org CLFMI Chain Link Fence Manufacturers Institute http://www.chainlinkinfo.org CPMB Concrete Plant Manufacturers Bureau http://www.cpmb.org CRA California Redwood Association http://www.calredwood.org CRSI Concrete Reinforcing Steel Institute http://www.crsi.org CTI Cooling Technology Institute http://www.cti.org DHI Door and Hardware Institute http://www.dhi.org EGSA Electrical Generating Systems Association http://www.egsa.org EEI Edison Electric Institute http://www.eei.org EPA Environmental Protection Agency http://www.epa.gov ETL ETL Testing Laboratories, Inc. http://www.et1.com FAA Federal Aviation Administration http://www.faa.gov FCC Federal Communications Commission http://www.fcc.gov FPS The Forest Products Society http://www.forestprod.org GANA Glass Association of North America http://www.cssinfo.com/info/gana.html/ FMFactory Mutual Insurance http://www.fmglobal.com GΑ Gypsum Association http://www.gypsum.org GSA General Services Administration http://www.gsa.gov ΗI Hydraulic Institute http://www.pumps.org Hardwood Plywood & Veneer Association HPVA http://www.hpva.org ICBO International Conference of Building Officials http://www.icbo.org ICEA Insulated Cable Engineers Association Inc. http://www.icea.net \ICAC Institute of Clean Air Companies http://www.icac.com IEEE Institute of Electrical and Electronics Engineers http://www.ieee.org\ IMSA International Municipal Signal Association http://www.imsasafety.org IPCEA Insulated Power Cable Engineers Association NBMA Metal Buildings Manufacturers Association http://www.mbma.com MSS Manufacturers Standardization Society of the Valve and Fittings Industry Inc. http://www.mss-hq.com NAAMM National Association of Architectural Metal Manufacturers http://www.naamm.org NAPHCC Plumbing-Heating-Cooling Contractors Association http://www.phccweb.org.org NBS National Bureau of Standards See - NIST NBBPVI National Board of Boiler and Pressure Vessel Inspectors http://www.nationboard.org NEC National Electric Code See - NFPA National Fire Protection Association NEMA National Electrical Manufacturers Association http://www.nema.org NFPA National Fire Protection Association http://www.nfpa.org NHLA National Hardwood Lumber Association http://www.natlhardwood.org NIH National Institute of Health http://www.nih.gov NIST National Institute of Standards and Technology http://www.nist.gov NLMA Northeastern Lumber Manufacturers Association, Inc. http://www.nelma.org NPA National Particleboard Association 18928 Premiere Court Gaithersburg, MD 20879 (301) 670-0604 NSF National Sanitation Foundation http://www.nsf.org NWWDA Window and Door Manufacturers Association http://www.nwwda.org OSHA Occupational Safety and Health Administration Department of Labor http://www.osha.gov PCA Portland Cement Association http://www.portcement.org PCI Precast Prestressed Concrete Institute http://www.pci.org PPI The Plastic Pipe Institute http://www.plasticpipe.org PEI Porcelain Enamel Institute, Inc. http://www.porcelainenamel.com PTI Post-Tensioning Institute http://www.post-tensioning.org RFCI The Resilient Floor Covering Institute http://www.rfci.com RIS Redwood Inspection Service See - CRA RMA Rubber Manufacturers Association, Inc. http://www.rma.org SCMA Southern Cypress Manufacturers Association http://www.cypressinfo.org SDI Steel Door Institute http://www.steeldoor.org IGMA Insulating Glass Manufacturers Alliance http://www.igmaonline.org SJI Steel Joist Institute http://www.steeljoist.org SMACNA Sheet Metal and Air-Conditioning Contractors National Association, Inc. http://www.smacna.org SSPC The Society for Protective Coatings http://www.sspc.org STI Steel Tank Institute http://www.steeltank.com SWI Steel Window Institute http://www.steelwindows.com TCA Tile
Council of America, Inc. http://www.tileusa.com TEMA Tubular Exchange Manufacturers Association http://www.tema.org TPI Truss Plate Institute, Inc. 583 D'Onofrio Drive; Suite 200 Madison, WI 53719 (608) 833-5900 UBC The Uniform Building Code See ICBO UL Underwriters' Laboratories Incorporated http://www.ul.com ULC Underwriters' Laboratories of Canada http://www.ulc.ca WCLIB West Coast Lumber Inspection Bureau 6980 SW Varns Road, P.O. Box 23145 Portland, OR 97223 (503) 639-0651 WRCLA Western Red Cedar Lumber Association P.O. Box 120786 New Brighton, MN 55112 (612) 633-4334 WWPA Western Wood Products Association http://www.wwpa.org - - - E N D - - - THIS PAGE WAS INTENTIONALLY LEFT BLANK # SECTION 01 45 29 TESTING LABORATORY SERVICES # PART 1 - GENERAL # 1.1 DESCRIPTION: This section specifies materials testing activities and inspection services required during project construction to be provided by a Testing Laboratory retained by Department of Veterans. # 1.2 APPLICABLE PUBLICATIONS: - A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. - B. American Association of State Highway and Transportation Officials (AASHTO): | | (AASHTO): | |----|---| | | T27-11Standard Method of Test for Sieve Analysis of | | | Fine and Coarse Aggregates | | | T96-02 (R2006)Standard Method of Test for Resistance to | | | Degradation of Small-Size Coarse Aggregate by | | | Abrasion and Impact in the Los Angeles Machine | | | T99-10Standard Method of Test for Moisture-Density | | | Relations of Soils Using a 2.5 Kg (5.5 lb.) | | | Rammer and a 305 mm (12 in.) Drop | | | T104-99 (R2007)Standard Method of Test for Soundness of | | | Aggregate by Use of Sodium Sulfate or Magnesium | | | Sulfate | | | T180-10Standard Method of Test for Moisture-Density | | | Relations of Soils using a 4.54 kg (10 lb.) | | | Rammer and a 457 mm (18 in.) Drop | | | T191-02(R2006)Standard Method of Test for Density of Soil In- | | | Place by the Sand-Cone Method | | C. | American Society for Testing and Materials (ASTM): | | | C31/C31M-10Standard Practice for Making and Curing Concrete | | | Test Specimens in the Field | | | C33/C33M-11aStandard Specification for Concrete Aggregates | | | C39/C39M-12Standard Test Method for Compressive Strength of | | | Cylindrical Concrete Specimens | | | C136-06Standard Test Method for Sieve Analysis of Fine | | | | and Coarse Aggregates C138/C138M-10b.....Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete | C143/C143M-10a | .Standard Test Method for Slump of Hydraulic | |--------------------|---| | | Cement Concrete | | C172/C172M-10 | Standard Practice for Sampling Freshly Mixed Concrete | | C173/C173M-10b | .Standard Test Method for Air Content of freshly | | · | Mixed Concrete by the Volumetric Method | | C330/C330M-09 | Standard Specification for Lightweight | | 03307 033011 03 | Aggregates for Structural Concrete | | OF 67 / OF 67 M 11 | Standard Test Method for Density Structural | | C307/C307M-II | | | 61010 11 | Lightweight Concrete | | C1019-11 | Standard Test Method for Sampling and Testing Grout | | C1064/C1064M-11 | .Standard Test Method for Temperature of Freshly | | | Mixed Portland Cement Concrete | | C1077-11c | .Standard Practice for Agencies Testing Concrete | | | and Concrete Aggregates for Use in Construction | | | and Criteria for Testing Agency Evaluation | | D422-63(2007) | .Standard Test Method for Particle-Size Analysis | | | of Soils | | D698-07e1 | .Standard Test Methods for Laboratory Compaction | | | Characteristics of Soil Using Standard Effort | | D1140-00(2006) | .Standard Test Methods for Amount of Material in | | | Soils Finer than No. 200 Sieve | | D1188-07e1 | .Standard Test Method for Bulk Specific Gravity | | | and Density of Compacted Bituminous Mixtures | | | Using Coated Samples | | D1556-07 | .Standard Test Method for Density and Unit Weight | | | of Soil in Place by the Sand-Cone Method | | D1557-09 | Standard Test Methods for Laboratory Compaction | | | Characteristics of Soil Using Modified Effort | | | (56,000ft lbf/ft3 (2,700 KNm/m3)) | | D2166-06 | Standard Test Method for Unconfined Compressive | | | Strength of Cohesive Soil | | D2167-08) | Standard Test Method for Density and Unit Weight | | | of Soil in Place by the Rubber Balloon Method | | D2216-10 | Standard Test Methods for Laboratory | | | Determination of Water (Moisture) Content of | | | Soil and Rock by Mass | | D2974_07a | Standard Test Methods for Moisture, Ash, and | | D29/4-0/d | | | | Organic Matter of Peat and Other Organic Soils | | D3666-11Standard Specification for Minimum Requirements | |---| | for Agencies Testing and Inspecting Road and | | Paving Materials | | D3740-11 Standard Practice for Minimum Requirements for | | Agencies Engaged in Testing and/or Inspection | | of Soil and Rock as used in Engineering Design | | and Construction | | D6938-10Standard Test Method for In-Place Density and | | Water Content of Soil and Soil-Aggregate by | | Nuclear Methods (Shallow Depth) | | E94-04(2010)Standard Guide for Radiographic Examination | #### 1.3 REQUIREMENTS: - A. Accreditation Requirements: Construction materials testing laboratories must be accredited by a laboratory accreditation authority and will be required to submit a copy of the Certificate of Accreditation and Scope of Accreditation. The laboratory's scope of accreditation must include the appropriate ASTM standards (i.e.; E329, C1077, D3666, D3740, A880, E543) listed in the technical sections of the specifications. Laboratories engaged in Hazardous Materials Testing shall meet the requirements of OSHA and EPA. The policy applies to the specific laboratory performing the actual testing, not just the "Corporate Office." - B. Inspection and Testing: Testing laboratory shall inspect materials and workmanship and perform tests described herein and additional tests requested by Contracting Officer's Representative (COR). When it appears materials furnished, or work performed by Contractor fail to meet construction contract requirements, Testing Laboratory shall direct attention of COR to such failure. - C. Written Reports: Testing laboratory shall submit test reports to COR, Contractor, unless other arrangements are agreed to in writing by the COR. Submit reports of tests that fail to meet construction contract requirements on colored paper. - D. Verbal Reports: Give verbal notification to COR immediately of any irregularity. # PART 2 - PRODUCTS (NOT USED) # PART 3 - EXECUTION #### 3.1 EARTHWORK: A. General: The Testing Laboratory shall provide qualified personnel, materials, equipment, and transportation as required to perform the services identified/required herein, within the agreed to schedule and/or time frame. The work to be performed shall be as identified herein and shall include but not be limited to the following: - 1. Observe fill and subgrades during proof-rolling to evaluate suitability of surface material to receive fill or base course. Provide recommendations to the COR regarding suitability or unsuitability of areas where proof-rolling was observed. Where unsuitable results are observed, witness excavation of unsuitable material and recommend to COR extent of removal and replacement of unsuitable materials and observe proof-rolling of replaced areas until satisfactory results are obtained. - 2. Provide part time observation of fill placement and compaction and field density testing in building areas and provide full time observation of fill placement and compaction and field density testing in pavement areas to verify that earthwork compaction obtained is in accordance with contract documents. - 3. Provide supervised geotechnical technician to inspect excavation, subsurface preparation, and backfill for structural fill. # B. Testing Compaction: - Determine maximum density and optimum moisture content for each type of fill, backfill and subgrade material used, in compliance with ASTM D698. - 2. Make field density tests in accordance with the primary testing method following ASTM D6938 wherever possible. Field density tests utilizing ASTM D1556, AASHTO T191, or ASTM D2167 shall be utilized on a case by case basis only if there are problems with the validity of the results from the primary method due to specific site field conditions. Should the testing laboratory propose these alternative methods, they should provide satisfactory explanation to the COR before the tests are conducted. - a. Building/Structure Slab Subgrade: At least one test of subgrade for every 185 $\rm m^2$ (2000 square feet) of building slab, but in no case fewer than one test per structure. In each compacted fill layer, perform one test for every 185 $\rm m^2$ (2000 square feet) of overlaying building slab, but in no case fewer than three tests. - b. Foundation Wall Backfill: One test per 30 m (100 feet) of each layer of compacted fill but in no case fewer than two tests. - c. Pavement Subgrade: One test for each $335~\text{m}^2$ (400 square yards), but in no case fewer than two tests. - d. Curb, Gutter, and Sidewalk: One test for each 90 m (300 feet), but in no case fewer than two tests. - e. Trenches: One test at maximum 30 m (100 foot) intervals per 1200 mm (4 foot) of vertical lift and at changes in required density, but in no case fewer than two tests. - f. Footing Subgrade: At least one test for each layer of soil on which footings will be placed. Subsequent verification and approval of each footing subgrade may be based on a visual comparison of each subgrade with related tested subgrade when acceptable to COR. In each compacted fill layer below wall footings, perform one field density test for every 30 m (100 feet) of wall.
Verify subgrade is level, all loose or disturbed soils have been removed, and correlate actual soil conditions observed with those indicated by test borings. - C. Fill and Backfill Material Gradation: One test per 250 cubic yards stockpiled or in-place source material, with a minimum of one test per day of placement. Gradation of fill and backfill material shall be determined in accordance with ASTM C136. - D. Testing for Footing Bearing Capacity: Evaluate if suitable bearing capacity material is encountered in footing subgrade. - E. Testing Materials: Test suitability of on-site and off-site borrow as directed by COR. #### 3.2 ASPHALT CONCRETE PAVING: - A. Aggregate Base Course: - 1. Determine maximum density and optimum moisture content for aggregate base material in accordance with ASTM D1557, Method D. - 2. Make a minimum of three field density tests on each day's final compaction on each aggregate course in accordance with ASTM D1556. - 3. Sample and test aggregate as necessary to insure compliance with specification requirements for gradation, wear, and soundness as specified in the applicable state highway standards and specifications. # B. Asphalt Concrete: - Aggregate: Sample and test aggregates in stock pile and hot-bins as necessary to insure compliance with specification requirements for gradation (AASHTO T27), wear (AASHTO T96), and soundness (AASHTO T104). - 2. Temperature: Check temperature of each load of asphalt concrete at mixing plant and at site of paving operation. - 3. Density: Make a minimum of two field density tests in accordance with ASTM D1188 of asphalt base and surface course for each day's paving operation. #### 3.3 SITE WORK CONCRETE: Test site work concrete including materials for concrete as required in Article CONCRETE of this section. #### 3.4 CONCRETE: - A. Batch Plant Inspection and Materials Testing: - Perform continuous batch plant inspection until concrete quality is established to satisfaction of COR with concurrence of Contracting Officer and perform periodic inspections thereafter as determined by COR. - 2. Periodically inspect and test batch proportioning equipment for accuracy and report deficiencies to COR. - 3. Sample and test mix ingredients as necessary to insure compliance with specifications. - 4. Sample and test aggregates daily and as necessary for moisture content. Test the dry rodded weight of the coarse aggregate whenever a sieve analysis is made, and when it appears there has been a change in the aggregate. - 5. Certify, in duplicate, ingredients and proportions and amounts of ingredients in concrete conform to approved trial mixes. When concrete is batched or mixed off immediate building site, certify (by signing, initialing or stamping thereon) on delivery slips (duplicate) that ingredients in truck-load mixes conform to proportions of aggregate weight, cement factor, and water-cement ratio of approved trial mixes. - B. Field Inspection and Materials Testing: - 1. Provide a technician at site of placement at all times to perform concrete sampling and testing. - 2. Review the delivery tickets of the ready-mix concrete trucks arriving on-site. Notify the Contractor if the concrete cannot be placed within the specified time limits or if the type of concrete delivered is incorrect. Reject any loads that do not comply with the Specification requirements. Rejected loads are to be removed from the site at the Contractor's expense. Any rejected concrete that is placed will be subject to removal. - 3. Take concrete samples at point of placement in accordance with ASTM C172. Mold and cure compression test cylinders in accordance with ASTM C31. Make at least three cylinders for each 40 m³ (50 cubic yards) or less of each concrete type, and at least three cylinders for any one day's pour for each concrete type. After good concrete quality control has been established and maintained as determined by COR make three cylinders for each 100 cubic yards or less of each - concrete type, and at least three cylinders from any one day's pour for each concrete type. Label each cylinder with an identification number. COR may require additional cylinders to be molded and cured under job conditions. - 4. Perform slump tests in accordance with ASTM C143. Test the first truck each day, and every time test cylinders are made. Test pumped concrete at the hopper and at the discharge end of the hose at the beginning of each day's pumping operations to determine change in slump. - 5. Determine the air content of concrete per ASTM C173. For concrete required to be air-entrained, test the first truck and every 20 m³ (25 cubic yards) thereafter each day. For concrete not required to be air-entrained, test every 80 m³ (100 cubic yards) at random. For pumped concrete, initially test concrete at both the hopper and the discharge end of the hose to determine change in air content. - 6. If slump or air content fall outside specified limits, make another test immediately from another portion of same batch. - 7. Notify laboratory technician at batch plant of mix irregularities and request materials and proportioning check. - 8. Verify that specified mixing has been accomplished. - 9. Environmental Conditions: Determine the temperature per ASTM C1064 for each truckload of concrete during hot weather and cold weather concreting operations: - a. When ambient air temperature falls below 4.4 degrees C (40 degrees F), record maximum and minimum air temperatures in each 24 hour period; record air temperature inside protective enclosure; record minimum temperature of surface of hardened concrete. - b. When ambient air temperature rises above 29.4 degrees C (85 degrees F), record maximum and minimum air temperature in each 24 hour period; record minimum relative humidity; record maximum wind velocity; record maximum temperature of surface of hardened concrete. - 10. Inspect the reinforcing steel placement, including bar size, bar spacing, top and bottom concrete cover, proper tie into the chairs, and grade of steel prior to concrete placement. Submit detailed report of observations. - 11. Observe conveying, placement, and consolidation of concrete for conformance to specifications. - 12. Observe condition of formed surfaces upon removal of formwork prior to repair of surface defects and observe repair of surface defects. - 13. Observe curing procedures for conformance with specifications, record dates of concrete placement, start of preliminary curing, start of final curing, end of curing period. - 14. Observe preparations for placement of concrete: - a. Inspect handling, conveying, and placing equipment, inspect vibrating and compaction equipment. - b. Inspect preparation of construction, expansion, and isolation joints. - 15. Observe preparations for protection from hot weather, cold weather, sun, and rain, and preparations for curing. - 16. Observe concrete mixing: - a. Monitor and record amount of water added at project site. - b. Observe minimum and maximum mixing times. - C. Laboratory Tests of Field Samples: - 1. Test compression test cylinders for strength in accordance with ASTM C39. For each test series, test one cylinder at 7 days and one cylinder at 28 days. Use remaining cylinder as a spare tested as directed by COR. Compile laboratory test reports as follows: Compressive strength test shall be result of one cylinder, except when one cylinder shows evidence of improper sampling, molding or testing, in which case it shall be discarded and strength of spare cylinder shall be used. - 2. Furnish certified compression test reports (duplicate) to COR. In test report, indicate the following information: - a. Cylinder identification number and date cast. - b. Specific location at which test samples were taken. - c. Type of concrete, slump, and percent air. - d. Compressive strength of concrete in MPa (psi). - e. Weather conditions during placing. - f. Temperature of concrete in each test cylinder when test cylinder was molded. - g. Maximum and minimum ambient temperature during placing. - h. Ambient temperature when concrete sample in test cylinder was taken. - i. Date delivered to laboratory and date tested. #### 3.5 REINFORCEMENT: A. Review mill test reports furnished by Contractor. - - - E N D - - - # SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS ## PART 1 - GENERAL ## 1.1 DESCRIPTION - A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work. - B. Environmental pollution and damage is defined as the presence of chemical, physical, or biological elements or agents which: - 1. Adversely effect human health or welfare, - 2. Unfavorably alter ecological balances of importance to human life, - 3. Effect other species of importance to humankind, or; - 4. Degrade the utility of the environment for aesthetic, cultural, and historical purposes. #### C. Definitions of Pollutants: - Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes. - 2. Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work. - 3. Sediment: Soil and other debris that has been eroded and transported by runoff water. - 4. Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities. - 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent
soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water of the United States" and would require a permit to discharge water from the governing agency. - 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones. - 7. Sanitary Wastes: - a. Sewage: Domestic sanitary sewage and human and animal waste. - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food. ## 1.2 QUALITY CONTROL - A. Establish and maintain quality control for the environmental protection of all items set forth herein. - B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken. # 1.3 REFERENCES - A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. - B. U.S. National Archives and Records Administration (NARA): 33 CFR 328......Definitions #### 1.4 SUBMITTALS - A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following: - 1. Environmental Protection Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall meet with the Contracting Officer's Representative (COR) to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the COR for approval, a written and/or graphic Environmental Protection Plan including, but not limited to, the following: - a. Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan. - b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site. - c. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel. - d. Description of the Contractor's environmental protection personnel training program. - e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's proposed operations and the requirements imposed by those laws, regulations, and permits. - f. Methods for protection of features to be preserved within authorized work areas including trees, shrubs, vines, grasses, ground cover, landscape features, air and water quality, fish and wildlife, soil, historical, and archeological and cultural resources. - g. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan. - h. Permits, licenses, and the location of the solid waste disposal area. - i. Drawings showing locations of any proposed temporary excavations or embankments for haul roads, material storage areas, structures, sanitary facilities, and stockpiles of excess or spoil materials. Include as part of an Erosion Control Plan approved by the District Office of the U.S. Soil Conservation Service and the Department of Veterans Affairs. - j. Environmental Monitoring Plans for the job site including land, water, air, and noise. - k. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas. This plan may be incorporated within the Erosion Control Plan. - B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures. ## 1.5 PROTECTION OF ENVIRONMENTAL RESOURCES - A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of this contract. Confine activities to areas defined by the specifications and drawings. - B. Protection of Land Resources: Prior to construction, identify all land resources to be preserved within the work area. Do not remove, cut, deface, injure, or destroy land resources including trees, shrubs, vines, grasses, top soil, and land forms without permission from the COR. Do not fasten or attach ropes, cables, or guys to trees for anchorage unless specifically authorized, or where special emergency use is permitted. - 1. Work Area Limits: Prior to any construction, mark the areas that require work to be performed under this contract. Mark or fence - isolated areas within the general work area that are to be saved and protected. Protect monuments, works of art, and markers before construction operations begin. Convey to all personnel the purpose of marking and protecting all necessary objects. - Protection of Landscape: Protect trees, shrubs, vines, grasses, land forms, and other landscape features shown on the drawings to be preserved by marking, fencing, or using any other approved techniques. - a. Box and protect from damage existing trees and shrubs to remain on the construction site. - b. Immediately repair all damage to existing trees and shrubs by trimming, cleaning, and painting with antiseptic tree paint. - c. Do not store building materials or perform construction activities closer to existing trees or shrubs than the farthest extension of their limbs. - 3. Reduction of Exposure of Unprotected Erodible Soils: Plan and conduct earthwork to minimize the duration of exposure of unprotected soils. Clear areas in reasonably sized increments only as needed to use. Form earthwork to final grade as shown. Immediately protect side slopes and back slopes upon completion of rough grading. - 4. Temporary Protection of Disturbed Areas: Construct diversion ditches, benches, and berms to retard and divert runoff from the construction site to protected drainage areas approved under paragraph 208 of the Clean Water Act. - a. Reuse or conserve the collected topsoil sediment as directed by the COR. Topsoil use and requirements are specified in Section 31 20 00, EARTH MOVING. - b. Institute effluent quality monitoring programs as required by Federal, State, and local environmental agencies. - 5. Erosion and Sedimentation Control Devices: The erosion and sediment controls selected and maintained by the Contractor shall be such that water quality standards are not violated as a result of the Contractor's activities. Construct or install all temporary and permanent erosion and sedimentation control features on the Environmental Protection Plan. Maintain temporary erosion and sediment control measures such as berms, dikes, drains, sedimentation basins, grassing, and mulching, until permanent drainage and erosion control facilities are completed and operative. - 6. Manage borrow areas on Government property to minimize erosion and to prevent sediment from entering nearby water courses or lakes. - 7. Manage and control spoil areas on Government property to limit spoil to areas on the Environmental Protection Plan and prevent erosion of soil or sediment from entering nearby water courses or lakes. - 8. Protect adjacent areas from despoilment by temporary excavations and embankments. - 9. Handle and dispose of solid wastes in such a manner that will prevent contamination of the environment. Place solid wastes (excluding clearing debris) in containers that are emptied on a regular schedule. Transport all solid waste off Government property and dispose of waste in compliance with Federal, State, and local requirements. - 10. Store chemical waste away from the work areas in corrosion resistant containers and dispose of waste in accordance with Federal, State, and local regulations. - 11. Handle discarded materials other than those included in the solid waste category as directed by the COR. - C. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to control water pollution by the listed construction activities that are included in this contract. - 1. Washing and Curing Water: Do not allow wastewater directly derived from construction activities to enter water areas. Collect and place wastewater in retention ponds allowing the suspended material to settle, the pollutants to separate, or the water to evaporate. - 2. Control movement of materials and equipment at stream crossings during construction to prevent violation of water pollution control standards of the Federal, State, or local government. - 3. Monitor water areas affected by construction. - D. Protection of Fish and Wildlife Resources: Keep construction activities under surveillance, management, and control to minimize interference with, disturbance of, or damage to fish and wildlife. Prior to beginning construction operations, list species that require specific attention along with measures for their protection. - E. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State of Colorado (5 CCR 1001-14) and Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified. - Particulates: Control dust particles, aerosols, and gaseous byproducts from all construction activities, processing, and
preparation of materials (such as from asphaltic batch plants) at all times, including weekends, holidays, and hours when work is not in progress. - 2. Particulates Control: Maintain all excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and all other work areas within or outside the project boundaries free from particulates which would cause a hazard or a nuisance. Sprinklering, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic precipitators, or other methods are permitted to control particulates in the work area. - 3. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits. - 4. Odors: Control odors of construction activities and prevent obnoxious odors from occurring. - F. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the COR. Maintain noise-produced work at or below the decibel levels and within the time periods specified. - 1. Perform construction activities involving repetitive, high-level impact noise only between 8:00a.m. and 6:00p.m. unless otherwise permitted by local ordinance or the COR. Repetitive impact noise on the property shall not exceed the following dB limitations: | Time Duration of Impact Noise | Sound Level in dB | |-------------------------------------|-------------------| | More than 12 minutes in any hour | 70 | | Less than 30 seconds of any hour | 85 | | Less than three minutes of any hour | 80 | | Less than 12 minutes of any hour | 75 | - 2. Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following: - a. Maintain maximum permissible construction equipment noise levels at 15 m (50 feet) (dBA): EARTHMOVING MATERIALS HANDLING FRONT LOADERS 75 CONCRETE MIXERS 75 | BACKHOES | 75 | CONCRETE PUMPS | 75 | |-----------------------|----|-----------------|----| | DOZERS | 75 | CRANES | 75 | | TRACTORS | 75 | DERRICKS IMPACT | 75 | | SCAPERS | 80 | PILE DRIVERS | 95 | | GRADERS | 75 | JACK HAMMERS | 75 | | TRUCKS | 75 | ROCK DRILLS | 80 | | PAVERS,
STATIONARY | 80 | PNEUMATIC TOOLS | 80 | | PUMPS | 75 | | | | GENERATORS | 75 | SAWS | 75 | | COMPRESSORS | 75 | VIBRATORS | 75 | - b. Use shields or other physical barriers to restrict noise transmission. - c. Provide soundproof housings or enclosures for noise-producing machinery. - d. Use efficient silencers on equipment air intakes. - e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified. - f. Line hoppers and storage bins with sound deadening material. - g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum. - 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the property line or 15 m (50 feet) from the noise source, whichever is greater. Measure the sound levels on the A weighing network of a General Purpose sound level meter at slow response. To minimize the effect of reflective sound waves at buildings, take measurements at 900 to 1800 mm (three to six feet) in front of any building face. Submit the recorded information to the COR noting any problems and the alternatives for mitigating actions. - G. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner. - H. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the COR. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations. - - - E N D - - - # SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste. - B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused. - C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following: - 1. Waste Management Plan development and implementation. - 2. Techniques to minimize waste generation. - 3. Sorting and separating of waste materials. - 4. Salvage of existing materials and items for reuse or resale. - 5. Recycling of materials that cannot be reused or sold. - D. At a minimum the following waste categories shall be diverted from landfills: - 1. Soil. - 2. Inerts (eg, concrete, masonry and asphalt). - 3. Clean dimensional wood and palette wood. - 4. Green waste (biodegradable landscaping materials). - 5. Engineered wood products (plywood, particle board and I-joists, etc). - 6. Metal products (eg, steel, wire, beverage containers, copper, etc). - 7. Cardboard, paper and packaging. - 8. Bitumen roofing materials. - 9. Plastics (eg, ABS, PVC). - 10. Carpet and/or pad. - 11. Gypsum board. - 12. Insulation. - 13. Paint. - 14. Fluorescent lamps. # 1.2 RELATED WORK - A. Section 02 41 00, DEMOLITION. - B. Section 01 00 00, GENERAL REQUIREMENTS. ## 1.3 QUALITY ASSURANCE - A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following: - 1. Excess or unusable construction materials. - 2. Packaging used for construction products. - 3. Poor planning and/or layout. - 4. Construction error. - 5. Over ordering. - 6. Weather damage. - 7. Contamination. - 8. Mishandling. - 9. Breakage. - B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction. - C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent. - D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor. - E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.wbdg.org/tools/cwm.php provides a Construction Waste Management Database that contains information on companies that haul, collect, and process recyclable debris from construction projects. - F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials. - G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages. - H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken. ## 1.4 TERMINOLOGY - A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations. - B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products. - C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations. - D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components. - E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills). - F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation. - G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal. - H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources. - I. Mixed Debris: Loads that include commingled recyclable and non-recyclable materials generated at the construction site. - J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of
recovering re-usable and recyclable materials and disposing non-recyclable materials. - K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal. - L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste. - On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving. - 2. Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products. - M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency. - N. Reuse: Materials that are recovered for use in the same form, on-site or off-site. - O. Return: To give back reusable items or unused products to vendors for credit. - P. Salvage: To remove waste materials from the site for resale or re-use by a third party. - Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling. - R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal. - S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling. #### 1.5 SUBMITTALS - A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following: - B. Prepare and submit to the Contracting Officer's Representative (COR) a written demolition debris management plan. The plan shall include, but not be limited to, the following information: - 1. Procedures to be used for debris management. - 2. Techniques to be used to minimize waste generation. - 3. Analysis of the estimated job site waste to be generated: - a. List of each material and quantity to be salvaged, reused, recycled. - b. List of each material and quantity proposed to be taken to a landfill. - 4. Detailed description of the Means/Methods to be used for material handling. - a. On site: Material separation, storage, protection where applicable. - b. Off site: Transportation means and destination. Include list of materials. - 1) Description of materials to be site-separated and self-hauled to designated facilities. - 2) Description of mixed materials to be collected by designated waste haulers and removed from the site. - c. The names and locations of mixed debris reuse and recycling facilities or sites. - d. The names and locations of trash disposal landfill facilities or sites. - e. Documentation that the facilities or sites are approved to receive the materials. - C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan. - D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling. # 1.6 APPLICABLE PUBLICATIONS - A Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met. - B. U.S. Green Building Council (USGBC): LEED Green Building Rating System for New Construction ## 1.7 RECORDS Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template. ## PART 2 - PRODUCTS ## 2.1 MATERIALS - A. List of each material and quantity to be salvaged, recycled, reused. - B. List of each material and quantity proposed to be taken to a landfill. - C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings. # PART 3 - EXECUTION ## 3.1 COLLECTION - A. Provide all necessary containers, bins and storage areas to facilitate effective waste management. - B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing. - C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations. #### 3.2 DISPOSAL - A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations. - B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator. # 3.3 REPORT - A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered. - B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices. Include the net total costs or savings for each salvaged or recycled material. - C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal. - - E N D - - - #### **SECTION 01 91 00** ## GENERAL COMMISSIONING REQUIREMENTS #### PART 1 - GENERAL #### 1.1 COMMISSIONING DESCRIPTION - A. This Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS shall form the basis of the construction phase commissioning process and procedures. The Commissioning Agent shall add, modify, and refine the commissioning procedures, as approved by the Department of Veterans Affairs (VA), to suit field conditions and actual manufacturer's equipment, incorporate test data and procedure results, and provide detailed scheduling for all commissioning tasks. - B. Various sections of the project specifications require equipment startup, testing, and adjusting services. Requirements for startup, testing, and adjusting services specified in the Division 7, Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 series sections of these specifications are intended to be provided in coordination with the commissioning services and are not intended to duplicate services. The Contractor shall coordinate the work required by individual specification sections with the commissioning services requirements specified herein. - C. Where individual testing, adjusting, or related services are required in the project specifications and not specifically required by this commissioning requirements specification, the specified services shall be provided and copies of documentation, as required by those specifications shall be submitted to the VA and the Commissioning Agent to be indexed for future reference. - D. Where training or educational services for VA are required and specified in other sections of the specifications, including but not limited to Division 7, Division 8, Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 series sections of the specification, these services are intended to be provided in addition to the training and educational services specified herein. - E. Commissioning is a systematic process of verifying that the building systems perform interactively according to the construction documents and the VA's operational needs. The commissioning process shall encompass and coordinate the system documentation, equipment startup, control system calibration, testing and balancing, performance testing and training. Commissioning during the construction and post-occupancy phases is intended to achieve the following specific objectives according to the contract documents: - 1. Verify that the applicable equipment and systems are installed in accordance with the contact documents and according to the manufacturer's recommendations. - 2. Verify and document proper integrated performance of equipment and systems. - 3. Verify that Operations & Maintenance documentation is complete. - 4. Verify that all components requiring servicing can be accessed, serviced and removed without disturbing nearby components including ducts, piping, cabling or wiring. - 5. Verify that the VA's operating personnel are adequately trained to enable them to operate, monitor, adjust, maintain, and repair building systems in an effective and energy-efficient manner. - 6. Document the successful achievement of the commissioning objectives listed above. - F. The commissioning process does not take away from or reduce the responsibility of the Contractor to provide a finished and fully functioning product. # 1.2 CONTRACTUAL RELATIONSHIPS - A. For this construction project, the Department of Veterans Affairs contracts with a Contractor to provide construction services. The contracts are administered by the VA Contracting Officer and the Contracting Officer's Representative (COR) as the designated representative of the
Contracting Officer. On this project, the authority to modify the contract in any way is strictly limited to the authority of the Contracting Officer. - B. In this project, only two contract parties are recognized and communications on contractual issues are strictly limited to VA COR and the Contractor. It is the practice of the VA to require that communications between other parties to the contracts (Subcontractors and Vendors) be conducted through the COR and Contractor. It is also the practice of the VA that communications between other parties of the project (Commissioning Agent and Architect/Engineer) be conducted through the COR. - C. Whole Building Commissioning is a process that relies upon frequent and direct communications, as well as collaboration between all parties to the construction process. By its nature, a high level of communication and cooperation between the Commissioning Agent and all other parties (Architects, Engineers, Subcontractors, Vendors, third party testing agencies, etc.) is essential to the success of the Commissioning effort. - D. With these fundamental practices in mind, the commissioning process described herein has been developed to recognize that, in the execution of the Commissioning Process, the Commissioning Agent must develop effective methods to communicate with every member of the construction team involved in delivering commissioned systems while simultaneously respecting the exclusive contract authority of the Contracting Officer and COR. Thus, the procedures outlined in this specification must be executed within the following limitations: - 1. No communications (verbal or written) from the Commissioning Agent shall be deemed to constitute direction that modifies the terms of any contract between the Department of Veterans Affairs and the Contractor. - 2. Commissioning Issues identified by the Commissioning Agent will be delivered to the COR and copied to the designated Commissioning Representatives for the Contractor and subcontractors on the Commissioning Team for information only in order to expedite the communication process. These issues must be understood as the professional opinion of the Commissioning Agent and as suggestions for resolution. - 3. In the event that any Commissioning Issues and suggested resolutions are deemed by the COR to require either an official interpretation of the construction documents or require a modification of the contract documents, the Contracting Officer or COR will issue an official directive to this effect. - 4. All parties to the Commissioning Process shall be individually responsible for alerting the COR of any issues that they deem to constitute a potential contract change prior to acting on these issues. - 5. Authority for resolution or modification of design and construction issues rests solely with the Contracting Officer or COR, with appropriate technical guidance from the Architect/Engineer and/or Commissioning Agent. ## 1.3 RELATED WORK - A. Section 01 00 00 GENERAL REQUIREMENTS. - B. Section 01 32.16.15 PROJECT SCHEDULES (SMALL PROJECTS DESIGN/BID/BUILD) - C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES - D. Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS. - E. Section 26 08 00 COMMISSIONING OF ELECTRICAL SYSTEMS. - F. Section 33 08 00 COMMISSIONING OF SITE UTILITIES. # 1.4 SUMMARY - A. This Section includes general requirements that apply to implementation of commissioning without regard to systems, subsystems, and equipment being commissioned. - B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance. ## 1.5 ACRONYMS | List of Acronyms | | | |------------------|---|--| | Acronym | Meaning | | | A/E | Architect / Engineer Design Team | | | AHJ | Authority Having Jurisdiction | | | ASHRAE | Association Society for Heating Air Condition and | | | 110111111 | Refrigeration Engineers | | | BOD | Basis of Design | | | BSC | Building Systems Commissioning | | | CCTV | Closed Circuit Television | | | CD | Construction Documents | | | CMMS | Computerized Maintenance Management System | | | CO | Contracting Officer (VA) | | | COR | Contracting Officer's Representative (see also VA-RE) | | | COBie | Construction Operations Building Information Exchange | | | CPC | Construction Phase Commissioning | | | Cx | Commissioning | | | CxA | Commissioning Agent | | | CxM | Commissioning Manager | | | CxR | Commissioning Representative | | | List of Acronyms | | | |------------------|---|--| | Acronym | Meaning | | | DPC | Design Phase Commissioning | | | FPT | Functional Performance Test | | | GBI-GG | Green Building Initiative - Green Globes | | | HVAC | Heating, Ventilation, and Air Conditioning | | | LEED | Leadership in Energy and Environmental Design | | | NC | Department of Veterans Affairs National Cemetery | | | NCA | Department of Veterans Affairs National Cemetery | | | | Administration | | | NEBB | National Environmental Balancing Bureau | | | O&M | Operations & Maintenance | | | OPR | Owner's Project Requirements | | | PFC | Pre-Functional Checklist | | | PFT | Pre-Functional Test | | | SD | Schematic Design | | | SO | Site Observation | | | TAB | Test Adjust and Balance | | | VA | Department of Veterans Affairs | | | VAMC | VA Medical Center | | | VA CFM | VA Office of Construction and Facilities Management | | | VACO | VA Central Office | | | VA PM | VA Project Manager | | | VA-COR | VA Contracting Officer's Representative | | | USGBC | United States Green Building Council | | # 1.6 DEFINITIONS Acceptance Phase Commissioning: Commissioning tasks executed after most construction has been completed, most Site Observations and Static Tests have been completed and Pre-Functional Testing has been completed and accepted. The main commissioning activities performed during this phase are verification that the installed systems are functional by conducting Systems Functional Performance tests and Owner Training. Accuracy: The capability of an instrument to indicate the true value of a measured quantity. **Back Check:** A back check is a verification that an agreed upon solution to a design comment has been adequately addressed in a subsequent design review Basis of Design (BOD): The Engineer's Basis of Design is comprised of two components: the Design Criteria and the Design Narrative, these documents record the concepts, calculations, decisions, and product selections used to meet the Owner's Project Requirements (OPR) and to satisfy applicable regulatory requirements, standards, and guidelines. Benchmarks: Benchmarks are the comparison of a building's energy usage to other similar buildings and to the building itself.. For example, ENERGY STAR Portfolio Manager is a frequently used and nationally recognized building energy benchmarking tool. Building Information Modeling (BIM): Building Information Modeling is a parametric database which allows a building to be designed and constructed virtually in 3D, and provides reports both in 2D views and as schedules. This electronic information can be extracted and reused for pre-populating facility management CMMS systems. Building Systems Commissioning (BSC): NEBB acronym used to designate its commissioning program. <u>Calibrate:</u> The act of comparing an instrument of unknown accuracy with a standard of known accuracy to detect, correlate, report, or eliminate by adjustment any variation in the accuracy of the tested instrument. <u>CCTV:</u> Closed circuit Television. Normally used for security surveillance and alarm detections as part of a special electrical security system. <u>COBie:</u> Construction Operations Building Information Exchange (COBie) is an electronic industry data format used to transfer information developed during design, construction, and commissioning into the Computer Maintenance Management Systems (CMMS) used to operate facilities. See the Whole Building Design Guide website for further information (http://www.wbdg.org/resources/cobie.php) Commissionability: Defines a design component or construction process that has the necessary elements that will allow a system or component to be effectively measured, tested, operated and commissioned Commissioning Agent (CxA): The qualified Commissioning Professional who administers the Cx process by managing the Cx team and overseeing the Commissioning Process. Where CxA is used in this specification it means the Commissioning Agent, members of his staff or appointed members of the commissioning team. Note that LEED uses the term Commissioning Authority in lieu of Commissioning Agent. <u>Commissioning Checklists:</u> Lists of data or inspections to be verified to ensure proper system or component installation, operation, and function. Verification checklists are developed and used during all phases of the commissioning process to verify that the Owner's Project Requirements (OPR) is being achieved. Commissioning Design Review: The commissioning design review is a collaborative review of the design professionals design documents for items pertaining to the following: owner's project requirements; basis of design; operability and maintainability (O&M) including documentation; functionality; training; energy efficiency, control systems' sequence of operations including building automation system features; commissioning specifications and the ability to functionally test the systems. Commissioning Issue: A condition identified by the Commissioning Agent or other member of the Commissioning Team that adversely affects the commissionability, operability, maintainability, or functionality of a system, equipment, or component. A condition that is in conflict with the Contract Documents and/or performance requirements of the installed systems and components. (See also - Commissioning
Observation). <u>Commissioning Manager (CxM)</u>: A qualified individual appointed by the Contractor to manage the commissioning process on behalf of the Contractor. <u>Commissioning Observation:</u> An issue identified by the Commissioning Agent or other member of the Commissioning Team that does not conform to the project OPR, contract documents or standard industry best practices. (See also Commissioning Issue) <u>Commissioning Plan:</u> A document that outlines the commissioning process, commissioning scope and defines responsibilities, processes, schedules, and the documentation requirements of the Commissioning Process. <u>Commissioning Process:</u> A quality focused process for enhancing the delivery of a project. The process focuses upon verifying and documenting that the facility and all of its systems, components, and assemblies are planned, designed, installed, tested, can be operated, and maintained to meet the Owner's Project Requirements. <u>Commissioning Report:</u> The final commissioning document which presents the commissioning process results for the project. Cx reports include an executive summary, the commissioning plan, issue log, correspondence, and all appropriate check sheets and test forms. Commissioning Representative (CxR): An individual appointed by a subcontractor to manage the commissioning process on behalf of the subcontractor. <u>Commissioning Specifications:</u> The contract documents that detail the objective, scope and implementation of the commissioning process as developed in the Commissioning Plan. <u>Commissioning Team:</u> Individual team members whose coordinated actions are responsible for implementing the Commissioning Process. <u>Construction Phase Commissioning:</u> All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning. <u>Contract Documents (CD):</u> Contract documents include design and construction contracts, price agreements and procedure agreements. Contract Documents also include all final and complete drawings, specifications and all applicable contract modifications or supplements. <u>Construction Phase Commissioning (CPC):</u> All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning. Coordination Drawings: Drawings showing the work of all trades that are used to illustrate that equipment can be installed in the space allocated without compromising equipment function or access for maintenance and replacement. These drawings graphically illustrate and dimension manufacturers' recommended maintenance clearances. On mechanical projects, coordination drawings include structural steel, ductwork, major piping and electrical conduit and show the elevations and locations of the above components. <u>Data Logging:</u> The monitoring and recording of temperature, flow, current, status, pressure, etc. of equipment using stand-alone data recorders. <u>Deferred System Test:</u> Tests that cannot be completed at the end of the acceptance phase due to ambient conditions, schedule issues or other conditions preventing testing during the normal acceptance testing period. Deficiency: See "Commissioning Issue". Design Criteria: A listing of the VA Design Criteria outlining the project design requirements, including its source. These are used during the design process to show the design elements meet the OPR. Design Intent: The overall term that includes the OPR and the BOD. It is a detailed explanation of the ideas, concepts, and criteria that are defined by the owner to be important. The design intent documents are <u>Design Narrative:</u> A written description of the proposed design solutions that satisfy the requirements of the OPR. criteria. <u>Design Phase Commissioning (DPC):</u> All commissioning tasks executed during the design phase of the project. utilized to provide a written record of these ideas, concepts and Environmental Systems: Systems that use a combination of mechanical equipment, airflow, water flow and electrical energy to provide heating, ventilating, air conditioning, humidification, and dehumidification for the purpose of human comfort or process control of temperature and humidity. **Executive Summary:** A section of the Commissioning report that reviews the general outcome of the project. It also includes any unresolved issues, recommendations for the resolution of unresolved issues and all deferred testing requirements. **Functionality:** This defines a design component or construction process which will allow a system or component to operate or be constructed in a manner that will produce the required outcome of the OPR. <u>Functional Test Procedure (FTP):</u> A written protocol that defines methods, steps, personnel, and acceptance criteria for tests conducted on components, equipment, assemblies, systems, and interfaces among systems. <u>Industry Accepted Best Practice:</u> A design component or construction process that has achieved industry consensus for quality performance and functionality. Refer to the current edition of the NEBB Design Phase Commissioning Handbook for examples. <u>Installation Verification:</u> Observations or inspections that confirm the system or component has been installed in accordance with the contract documents and to industry accepted best practices. <u>Integrated System Testing:</u> Integrated Systems Testing procedures entail testing of multiple integrated systems performance to verify proper functional interface between systems. Typical Integrated Systems Testing includes verifying that building systems respond properly to loss of utility, transfer to emergency power sources, re-transfer from emergency power source to normal utility source; interface between HVAC controls and Fire Alarm systems for equipment shutdown, interface between Fire Alarm system and elevator control systems for elevator recall and shutdown; interface between Fire Alarm System and Security Access Control Systems to control access to spaces during fire alarm conditions; and other similar tests as determined for each specific project. Issues Log: A formal and ongoing record of problems or concerns - and their resolution - that have been raised by members of the Commissioning Team during the course of the Commissioning Process. <u>Lessons Learned Workshop:</u> A workshop conducted to discuss and document project successes and identify opportunities for improvements for future projects. <u>Maintainability:</u> A design component or construction process that will allow a system or component to be effectively maintained. This includes adequate room for access to adjust and repair the equipment. Maintainability also includes components that have readily obtainable repair parts or service. Manual Test: Testing using hand-held instruments, immediate control system readouts or direct observation to verify performance (contrasted to analyzing monitored data taken over time to make the 'observation'). Owner's Project Requirements (OPR): A written document that details the project requirements and the expectations of how the building and its systems will be used and operated. These include project goals, measurable performance criteria, cost considerations, benchmarks, success criteria, and supporting information. <u>Peer Review:</u> A formal in-depth review separate from the commissioning review processes. The level of effort and intensity is much greater than a typical commissioning facilitation or extended commissioning review. The VA usually hires an independent third-party (called the IDIQ A/E) to conduct peer reviews. <u>Precision:</u> The ability of an instrument to produce repeatable readings of the same quantity under the same conditions. The precision of an instrument refers to its ability to produce a tightly grouped set of values around the mean value of the measured quantity. <u>Pre-Design Phase Commissioning:</u> Commissioning tasks performed prior to the commencement of design activities that includes project programming and the development of the commissioning process for the project <u>Pre-Functional Checklist (PFC):</u> A form used by the contractor to verify that appropriate components are onsite, correctly installed, set up, calibrated, functional and ready for functional testing. <u>Pre-Functional Test (PFT):</u> An inspection or test that is done before functional testing. PFT's include installation verification and system and component start up tests. <u>Procedure or Protocol:</u> A defined approach that outlines the execution of a sequence of work or operations. Procedures are used to produce repeatable and defined results. Range: The upper and lower limits of an instrument's ability to measure the value of a quantity for which the instrument is calibrated. **Resolution:** This word has two meanings in the Cx Process. The first refers to the smallest change in a measured variable that an instrument can detect. The second refers to the implementation of actions that correct a tested or observed deficiency. <u>Site Observation Visit:</u> On-site inspections and observations made by the Commissioning Agent for the purpose of verifying component, equipment, and system installation, to observe contractor testing, equipment start-up procedures, or other purposes. <u>Site Observation Reports (SO):</u> Reports of site inspections and observations made by the Commissioning Agent. Observation reports are intended to provide early indication of an installation issue which will need correction or analysis. <u>Special System Inspections:</u> Inspections required by a local code authority prior to occupancy and are not normally a part of the commissioning process. <u>Static Tests:</u> Tests or inspections that validate a specified static condition such as pressure testing. Static tests may be specification or code initiated. <u>Start Up Tests:</u> Tests that validate the
component or system is ready for automatic operation in accordance with the manufactures requirements. **Systems Manual:** A system-focused composite document that includes all information required for the owners operators to operate the systems. <u>Test Procedure:</u> A written protocol that defines methods, personnel, and expectations for tests conducted on components, equipment, assemblies, systems, and interfaces among systems. <u>Testing:</u> The use of specialized and calibrated instruments to measure parameters such as: temperature, pressure, vapor flow, air flow, fluid flow, rotational speed, electrical characteristics, velocity, and other data in order to determine performance, operation, or function. Testing, Adjusting, and Balancing (TAB): A systematic process or service applied to heating, ventilating and air-conditioning (HVAC) systems and other environmental systems to achieve and document air and hydronic flow rates. The standards and procedures for providing these services are referred to as "Testing, Adjusting, and Balancing" and are described in the Procedural Standards for the Testing, Adjusting and Balancing of Environmental Systems, published by NEBB or AABC. Thermal Scans: Thermographic pictures taken with an Infrared Thermographic Camera. Thermographic pictures show the relative temperatures of objects and surfaces and are used to identify leaks, thermal bridging, thermal intrusion, electrical overload conditions, moisture containment, and insulation failure. <u>Training Plan:</u> A written document that details, in outline form the expectations of the operator training. Training agendas should include instruction on how to obtain service, operate, startup, shutdown and maintain all systems and components of the project. **Trending:** Monitoring over a period of time with the building automation system. <u>Unresolved Commissioning Issue:</u> Any Commissioning Issue that, at the time that the Final Report or the Amended Final Report is issued that has not been either resolved by the construction team or accepted by the VA. Validation: The process by which work is verified as complete and operating correctly: - 1. First party validation occurs when a firm or individual verifying the task is the same firm or individual performing the task. - 2. Second party validation occurs when the firm or individual verifying the task is under the control of the firm performing the task or has other possibilities of financial conflicts of interest in the resolution (Architects, Designers, General Contractors and Third Tier Subcontractors or Vendors). 3. Third party validation occurs when the firm verifying the task is not associated with or under control of the firm performing or designing the task. <u>Verification:</u> The process by which specific documents, components, equipment, assemblies, systems, and interfaces among systems are confirmed to comply with the criteria described in the Owner's Project Requirements. <u>Warranty Phase Commissioning:</u> Commissioning efforts executed after a project has been completed and accepted by the Owner. Warranty Phase Commissioning includes follow-up on verification of system performance, measurement and verification tasks and assistance in identifying warranty issues and enforcing warranty provisions of the construction contract. <u>Warranty Visit:</u> A commissioning meeting and site review where all outstanding warranty issues and deferred testing is reviewed and discussed. Whole Building Commissioning: Commissioning of building systems such as Building Envelope, HVAC, Electrical, Special Electrical (Fire Alarm, Security & Communications), Plumbing and Fire Protection as described in this specification. # 1.7 SYSTEMS TO BE COMMISSIONED - A. Commissioning of a system or systems specified for this project is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent. - B. The following systems will be commissioned as part of this project: | Systems To Be Commissioned | | | |----------------------------|---|--| | System | Description | | | Plumbing | | | | Wastewater Pump | Sump pumps | | | Systems | | | | Electrical | | | | Medium-Voltage | Medium-Voltage Switchgear, Medium-Voltage | | | Electrical | Switches, Underground ductbank and | | | Distribution Systems | distribution, Pad-Mount Transformers, Medium- | | | | Voltage Load Interrupter Switches, | | | Grounding & Bonding | Witness 3rd party testing, review reports | | | Systems | | | | Low-Voltage | Normal power distribution system, Life-safety | | | Distribution System | power distribution system, critical power | | | | distribution system, equipment power | | | | distribution system, switchboards, | | | | distribution panels, panelboards, verify | | | | breaker testing results (injection current, | | | | etc) | | | Site Utilities | | | | Chilled Water | Site Chilled Water Supply/Return Distribution | | | Utilities | | | # 1.8 COMMISSIONING TEAM - A. The commissioning team shall consist of, but not be limited to, representatives of Contractor, including Project Superintendent and subcontractors, installers, schedulers, suppliers, and specialists deemed appropriate by the Department of Veterans Affairs (VA) and Commissioning Agent. - B. Members Appointed by Contractor: - Contractor' Commissioning Manager: The designated person, company, or entity that plans, schedules and coordinates the commissioning activities for the construction team. - 2. Contractor's Commissioning Representative(s): Individual(s), each having authority to act on behalf of the entity he or she represents, explicitly organized to implement the commissioning process through coordinated actions. # C. Members Appointed by VA: - Commissioning Agent: The designated person, company, or entity that plans, schedules, and coordinates the commissioning team to implement the commissioning process. The VA will engage the CxA under a separate contract. - 2. User: Representatives of the facility user and operation and maintenance personnel. - 3. A/E: Representative of the Architect and engineering design professionals. # 1.9 VA'S COMMISSIONING RESPONSIBILITIES - A. Appoint an individual, company or firm to act as the Commissioning Agent. - B. Assign operation and maintenance personnel and schedule them to participate in commissioning team activities including, but not limited to, the following: - 1. Coordination meetings. - 2. Training in operation and maintenance of systems, subsystems, and equipment. - 3. Testing meetings. - 4. Witness and assist in Systems Functional Performance Testing. - 5. Demonstration of operation of systems, subsystems, and equipment. - C. Provide the Construction Documents, prepared by Architect and approved by VA, to the Commissioning Agent and for use in managing the commissioning process, developing the commissioning plan, systems manuals, and reviewing the operation and maintenance training plan. ## 1.10 CONTRACTOR'S COMMISSIONING RESPONSIBILITIES - A. The Contractor shall assign a Commissioning Manager to manage commissioning activities of the Contractor, and subcontractors. - B. The Contractor shall ensure that the commissioning responsibilities outlined in these specifications are included in all subcontracts and that subcontractors comply with the requirements of these specifications. - C. The Contractor shall ensure that each installing subcontractor shall assign representatives with expertise and authority to act on behalf of the subcontractor and schedule them to participate in and perform commissioning team activities including, but not limited to, the following: - 1. Participate in commissioning coordination meetings. - 2. Conduct operation and maintenance training sessions in accordance with approved training plans. - 3. Verify that Work is complete and systems are operational according to the Contract Documents, including calibration of instrumentation and controls. - 4. Evaluate commissioning issues and commissioning observations identified in the Commissioning Issues Log, field reports, test reports or other commissioning documents. In collaboration with entity responsible for system and equipment installation, recommend corrective action. - 5. Review and comment on commissioning documentation. - 6. Participate in meetings to coordinate Systems Functional Performance Testing. - 7. Provide schedule for operation and maintenance data submittals, equipment startup, and testing to Commissioning Agent for incorporation into the commissioning plan. - 8. Provide information to the Commissioning Agent for developing commissioning plan. - 9. Participate in training sessions for VA's operation and maintenance personnel. - 10. Provide technicians who are familiar with the construction and operation of installed systems and who shall develop specific test procedures to conduct Systems Functional Performance Testing of installed systems. # 1.11 COMMISSIONING AGENT'S RESPONSIBILITIES - A. Organize and lead the commissioning team. - B. Prepare the commissioning plan. See Paragraph 1.11-A of this specification Section for further information. - C. Review and comment on selected submittals from the Contractor for general conformance with the Construction Documents. Review and comment on the ability to test and operate the system and/or equipment, including providing gages, controls and other components required to operate, maintain, and test the system. Review and comment on performance expectations of systems and equipment and interfaces between systems relating to the Construction Documents. - D. At the beginning of the construction phase, conduct an initial construction phase coordination meeting for the purpose of reviewing the commissioning activities and establishing tentative schedules for - operation and maintenance
submittals; operation and maintenance training sessions; TAB Work; Pre-Functional Checklists, Systems Functional Performance Testing; and project completion. - E. Convene commissioning team meetings for the purpose of coordination, communication, and conflict resolution; discuss status of the commissioning processes. Responsibilities include arranging for facilities, preparing agenda and attendance lists, and notifying participants. The Commissioning Agent shall prepare and distribute minutes to commissioning team members and attendees within five workdays of the commissioning meeting. - F. Observe construction and report progress, observations and issues. Observe systems and equipment installation for adequate accessibility for maintenance and component replacement or repair, and for general conformance with the Construction Documents. - G. Prepare Project specific Pre-Functional Checklists and Systems Functional Performance Test procedures. - H. Coordinate Systems Functional Performance Testing schedule with the Contractor. - I. Witness selected systems startups. - J. Verify selected Pre-Functional Checklists completed and submitted by the Contractor. - K. Witness and document Systems Functional Performance Testing. - L. Compile test data, inspection reports, and certificates and include them in the systems manual and commissioning report. - M. Review and comment on operation and maintenance (O&M) documentation and systems manual outline for compliance with the Contract Documents. Operation and maintenance documentation requirements are specified in Paragraph 1.25, Section 01 00 00 GENERAL REQUIREMENTS. - N. Review operation and maintenance training program developed by the Contractor. Verify training plans provide qualified instructors to conduct operation and maintenance training. - O. Prepare commissioning Field Observation Reports. - P. Prepare the Final Commissioning Report. - Q. Return to the site at 10 months into the 12 month warranty period and review with facility staff the current building operation and the condition of outstanding issues related to the original and seasonal Systems Functional Performance Testing. Also interview facility staff and identify problems or concerns they have operating the building as originally intended. Make suggestions for improvements and for recording these changes in the O&M manuals. Identify areas that may come under warranty or under the original construction contract. Assist facility staff in developing reports, documents and requests for services to remedy outstanding problems. R. Assemble the final commissioning documentation, including the Final Commissioning Report and Addendum to the Final Commissioning Report. #### 1.12 COMMISSIONING DOCUMENTATION - A. Commissioning Plan: A document, prepared by Commissioning Agent, that outlines the schedule, allocation of resources, and documentation requirements of the commissioning process, and shall include, but is not limited, to the following: - 1. Plan for delivery and review of submittals, systems manuals, and other documents and reports. Identification of the relationship of these documents to other functions and a detailed description of submittals that are required to support the commissioning processes. Submittal dates shall include the latest date approved submittals must be received without adversely affecting commissioning plan. - Description of the organization, layout, and content of commissioning documentation (including systems manual) and a detailed description of documents to be provided along with identification of responsible parties. - 3. Identification of systems and equipment to be commissioned. - 4. Schedule of Commissioning Coordination meetings. - 5. Identification of items that must be completed before the next operation can proceed. - 6. Description of responsibilities of commissioning team members. - 7. Description of observations to be made. - 8. Description of requirements for operation and maintenance training. - 9. Schedule for commissioning activities with dates coordinated with overall construction schedule. - 10. Process and schedule for documenting changes on a continuous basis to appear in Project Record Documents. - 11. Process and schedule for completing prestart and startup checklists for systems, subsystems, and equipment to be verified and tested. - 12. Preliminary Systems Functional Performance Test procedures. - B. Systems Functional Performance Test Procedures: The Commissioning Agent will develop Systems Functional Performance Test Procedures for each system to be commissioned, including subsystems, or equipment and interfaces or interlocks with other systems. Systems Functional Performance Test Procedures will include a separate entry, with space for comments, for each item to be tested. Preliminary Systems Functional Performance Test Procedures will be provided to the VA, Architect/Engineer, and Contractor for review and comment. The Systems Performance Test Procedure will include test procedures for each mode of operation and provide space to indicate whether the mode under test responded as required. Each System Functional Performance Test procedure, regardless of system, subsystem, or equipment being tested, shall include, but not be limited to, the following: - 1. Name and identification code of tested system. - 2. Test number. - 3. Time and date of test. - 4. Indication of whether the record is for a first test or retest following correction of a problem or issue. - 5. Dated signatures of the person performing test and of the witness, if applicable. - 6. Individuals present for test. - 7. Observations and Issues. - 8. Issue number, if any, generated as the result of test. - C. Pre-Functional Checklists: The Commissioning Agent will prepare Pre-Functional Checklists. Pre-Functional Checklists shall be completed and signed by the Contractor, verifying that systems, subsystems, equipment, and associated controls are ready for testing. The Commissioning Agent will spot check Pre-Functional Checklists to verify accuracy and readiness for testing. Inaccurate or incomplete Pre-Functional Checklists shall be returned to the Contractor for correction and resubmission. - D. Test and Inspection Reports: The Commissioning Agent will record test data, observations, and measurements on Systems Functional Performance Test Procedure. The report will also include recommendation for system acceptance or non-acceptance. Photographs, forms, and other means appropriate for the application shall be included with data. Commissioning Agent Will compile test and inspection reports and test and inspection certificates and include them in systems manual and commissioning report. - E. Corrective Action Documents: The Commissioning Agent will document corrective action taken for systems and equipment that fail tests. The documentation will include any required modifications to systems and equipment and/or revisions to test procedures, if any. The Commissioning Agent will witness and document any retesting of systems and/or equipment requiring corrective action and document retest results. - F. Commissioning Issues Log: The Commissioning Agent will prepare and maintain Commissioning Issues Log that describes Commissioning Issues and Commissioning Observations that are identified during the Commissioning process. These observations and issues include, but are not limited to, those that are at variance with the Contract Documents. The Commissioning Issues Log will identify and track issues as they are encountered, the party responsible for resolution, progress toward resolution, and document how the issue was resolved. The Master Commissioning Issues Log will also track the status of unresolved issues. - 1. Creating an Commissioning Issues Log Entry: - a. Identify the issue with unique numeric or alphanumeric identifier by which the issue may be tracked. - b. Assign a descriptive title for the issue. - c. Identify date and time of the issue. - d. Identify test number of test being performed at the time of the observation, if applicable, for cross reference. - e. Identify system, subsystem, and equipment to which the issue applies. - f. Identify location of system, subsystem, and equipment. - g. Include information that may be helpful in diagnosing or evaluating the issue. - h. Note recommended corrective action. - i. Identify commissioning team member responsible for corrective - j. Identify expected date of correction. - k. Identify person that identified the issue. - 2. Documenting Issue Resolution: - a. Log date correction is completed or the issue is resolved. - b. Describe corrective action or resolution taken. Include description of diagnostic steps taken to determine root cause of the issue, if any. - c. Identify changes to the Contract Documents that may require - d. State that correction was completed and system, subsystem, and equipment are ready for retest, if applicable. - e. Identify person(s) who corrected or resolved the issue. - f. Identify person(s) verifying the issue resolution. - G. Final Commissioning Report: The Commissioning Agent will document results of the commissioning process, including unresolved issues, and performance of systems, subsystems, and equipment. The Commissioning Report will indicate whether systems, subsystems, and equipment have been properly installed and are performing according to the Contract Documents. This report will be used by the Department of Veterans Affairs when determining that systems will be accepted. This report will be used to evaluate systems, subsystems, and equipment and will serve as a future reference document during VA occupancy and operation. It shall describe components and performance that exceed requirements of the Contract Documents and those that do not meet requirements of the Contract Documents. The commissioning report will include, but is not limited to, the following: - Lists and explanations of substitutions;
compromises; variances with the Contract Documents; record of conditions; and, if appropriate, recommendations for resolution. Design Narrative documentation maintained by the Commissioning Agent. - 2. Commissioning plan. - 3. Pre-Functional Checklists completed by the Contractor, with annotation of the Commissioning Agent review and spot check. - 4. Systems Functional Performance Test Procedures, with annotation of test results and test completion. - 5, Commissioning Issues Log. - 6. Listing of deferred and off season test(s) not performed, including the schedule for their completion. - H. Addendum to Final Commissioning Report: The Commissioning Agent will prepare an Addendum to the Final Commissioning Report near the end of the Warranty Period. The Addendum will indicate whether systems, subsystems, and equipment are complete and continue to perform according to the Contract Documents. The Addendum to the Final Commissioning Report shall include, but is not limited to, the following: - 1. Documentation of deferred and off season test(s) results. - Completed Systems Functional Performance Test Procedures for off season test(s). - 3. Documentation that unresolved system performance issues have been resolved. - 4. Updated Commissioning Issues Log, including status of unresolved issues. - 5. Identification of potential Warranty Claims to be corrected by the Contractor. - I. Systems Manual: The Commissioning Agent will gather required information and compile the Systems Manual. The Systems Manual will include, but is not limited to, the following: - 1. Design Narrative, including system narratives, schematics, singleline diagrams, flow diagrams, equipment schedules, and changes made throughout the Project. - 2. Reference to Final Commissioning Plan. - 3. Reference to Final Commissioning Report. - 4. Approved Operation and Maintenance Data as submitted by the Contractor. # 1.13 SUBMITTALS - A. Preliminary Commissioning Plan Submittal: The Commissioning Agent has prepared a Preliminary Commissioning Plan based on the final Construction Documents. The Preliminary Commissioning Plan is included as an Appendix to this specification section. The Preliminary Commissioning Plan is provided for information only. It contains preliminary information about the following commissioning activities: - 1. The Commissioning Team: A list of commissioning team members by organization. - 2. Systems to be commissioned. A detailed list of systems to be commissioned for the project. This list also provides preliminary information on systems/equipment submittals to be reviewed by the Commissioning Agent; preliminary information on Pre-Functional Checklists that are to be completed; preliminary information on Systems Performance Testing, including information on testing sample size (where authorized by the VA). - 3. Commissioning Team Roles and Responsibilities: Preliminary roles and responsibilities for each Commissioning Team member. - 4. Commissioning Documents: A preliminary list of commissioning-related documents, include identification of the parties responsible for preparation, review, approval, and action on each document. - 5. Commissioning Activities Schedule: Identification of Commissioning Activities, including Systems Functional Testing, the expected duration and predecessors for the activity. - 6. Pre-Functional Checklists: Preliminary Pre-Functional Checklists for equipment, components, subsystems, and systems to be commissioned. These Preliminary Pre-Functional Checklists provide guidance on the level of detailed information the Contractor shall include on the final submission. - 7. Systems Functional Performance Test Procedures: Preliminary step-by-step System Functional Performance Test Procedures to be used during Systems Functional Performance Testing. These Preliminary Systems Functional Performance procedures provide information on the level of testing rigor, and the level of Contractor support required during performance of system's testing. - B. Final Commissioning Plan Submittal: Based on the Final Construction Documents and the Contractor's project team, the Commissioning Agent will prepare the Final Commissioning Plan as described in this section. The Commissioning Agent will submit three hard copies and three sets of electronic files of Final Commissioning Plan. The Contractor shall review the Commissioning Plan and provide any comments to the VA. The Commissioning Agent will incorporate review comments into the Final Commissioning Plan as directed by the VA. - C. Systems Functional Performance Test Procedure: The Commissioning Agent will submit preliminary Systems Functional Performance Test Procedures to the Contractor, and the VA for review and comment. The Contractor shall return review comments to the VA and the Commissioning Agent. The VA will also return review comments to the Commissioning Agent. The Commissioning Agent will incorporate review comments into the Final Systems Functional Test Procedures to be used in Systems Functional Performance Testing. - D. Pre-Functional Checklists: The Commissioning Agent will submit Pre-Functional Checklists to be completed by the Contractor. - E. Test and Inspection Reports: The Commissioning Agent will submit test and inspection reports to the VA with copies to the Contractor and the Architect/Engineer. - F. Corrective Action Documents: The Commissioning Agent will submit corrective action documents to the VA COR with copies to the Contractor and Architect. - G. Preliminary Commissioning Report Submittal: The Commissioning Agent will submit three electronic copies of the preliminary commissioning report. One electronic copy, with review comments, will be returned to the Commissioning Agent for preparation of the final submittal. - H. Final Commissioning Report Submittal: The Commissioning Agent will submit four sets of electronically formatted information of the final commissioning report to the VA. The final submittal will incorporate comments as directed by the VA. ## I. Data for Commissioning: - The Commissioning Agent will request in writing from the Contractor specific information needed about each piece of commissioned equipment or system to fulfill requirements of the Commissioning Plan. - 2. The Commissioning Agent may request further documentation as is necessary for the commissioning process or to support other VA data collection requirements, including Construction Operations Building Information Exchange (COBIE), Building Information Modeling (BIM), etc. # 1.14 COMMISSIONING PROCESS - A. The Commissioning Agent will be responsible for the overall management of the commissioning process as well as coordinating scheduling of commissioning tasks with the VA and the Contractor. As directed by the VA, the Contractor shall incorporate Commissioning tasks, including, but not limited to, Systems Functional Performance Testing (including predecessors) with the Master Construction Schedule. - B. Within 14 days of contract award, the Contractor shall designate a specific individual as the Commissioning Manager (CxM) to manage and lead the commissioning effort on behalf of the Contractor. The Commissioning Manager shall be the single point of contact and communications for all commissioning related services by the Contractor. C. Within 21 days of contract award, the Contractor shall ensure that each subcontractor designates specific individuals as Commissioning Representatives (CXR) to be responsible for commissioning related tasks. The Contractor shall ensure the designated Commissioning Representatives participate in the commissioning process as team members providing commissioning testing services, equipment operation, adjustments, and corrections if necessary. The Contractor shall ensure that all Commissioning Representatives shall have sufficient authority to direct their respective staff to provide the services required, and to speak on behalf of their organizations in all commissioning related contractual matters. ## 1.15 QUALITY ASSURANCE - A. Instructor Qualifications: Factory authorized service representatives shall be experienced in training, operation, and maintenance procedures for installed systems, subsystems, and equipment. - B. Test Equipment Calibration: The Contractor shall comply with test equipment manufacturer's calibration procedures and intervals. Recalibrate test instruments immediately whenever instruments have been repaired following damage or dropping. Affix calibration tags to test instruments. Instruments shall have been calibrated within six months prior to use. # 1.16 COORDINATION - A. Management: The Commissioning Agent will coordinate the commissioning activities with the VA and Contractor. The Commissioning Agent will submit commissioning documents and information to the VA. All commissioning team members shall work together to fulfill their contracted responsibilities and meet the objectives of the contract documents. - B. Scheduling: The Contractor shall work with the Commissioning Agent and the VA to incorporate the commissioning activities into the construction schedule. The Commissioning Agent will provide sufficient information (including, but not limited to, tasks, durations and predecessors) on commissioning activities to allow the Contractor and the VA to schedule commissioning activities. All parties shall address scheduling issues and make necessary notifications in a timely manner in order to expedite the project and the commissioning process. The Contractor shall update the Master Construction as directed by the VA. - C. Initial Schedule of Commissioning Events: The Commissioning Agent will provide the initial schedule of primary commissioning events in the Commissioning Plan and at the commissioning coordination meetings. The Commissioning Plan will provide a format for this schedule. As construction progresses, more detailed schedules will be developed by the Contractor with information from the Commissioning
Agent. - D. Commissioning Coordinating Meetings: The Commissioning Agent will conduct periodic Commissioning Coordination Meetings of the commissioning team to review status of commissioning activities, to discuss scheduling conflicts, and to discuss upcoming commissioning process activities. - E. Pretesting Meetings: The Commissioning Agent will conduct pretest meetings of the commissioning team to review startup reports, Pre-Functional Checklist results, Systems Functional Performance Testing procedures, testing personnel and instrumentation requirements. - F. Systems Functional Performance Testing Coordination: The Contractor shall coordinate testing activities to accommodate required quality assurance and control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting. The Contractor shall coordinate the schedule times for tests, inspections, obtaining samples, and similar activities. # PART 2 - PRODUCTS # 2.1 TEST EQUIPMENT - A. The Contractor shall provide all standard and specialized testing equipment required to perform Systems Functional Performance Testing. Test equipment required for Systems Functional Performance Testing will be identified in the detailed System Functional Performance Test Procedure prepared by the Commissioning Agent. - B. Data logging equipment and software required to test equipment shall be provided by the Contractor. - C. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Specifications. If not otherwise noted, the following minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5 $^{\circ}$ C (1.0 $^{\circ}$ F) and a resolution of + or 0.1 $^{\circ}$ C (0.2 $^{\circ}$ F). Pressure sensors shall have an accuracy of + or 2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year. All equipment shall be calibrated according to the manufacturer's recommended intervals and following any repairs to the equipment. Calibration tags shall be affixed or certificates readily available. # PART 3 - EXECUTION # 3.1 COMMISSIONING PROCESS ROLES AND RESPONSIBILITIES A. The following table outlines the roles and responsibilities for the Commissioning Team members during the Construction Phase: | Construction Phase | | | CxA = Commissioning Agent | | | | L = Lead | |--------------------|---|--------|---------------------------|--------|--------|-----------------|--------------| | | | | Contra | cting | er's | P = Participate | | | | | Repres | entati | ve | | | A = Approve | | Commissioning R | oles & Responsibilities | A/E = | Design | Arch | Engine | eer | R = Review | | | | PC = P | rime C | ontrad | ctor | | O = Optional | | | | O&M = | Gov′t | Facili | ty 0&N | M | | | Category | Task Description | CxA | COR | A/E | PC | O&M | Notes | | Meetings | Construction Commissioning Kick Off meeting | L | А | Р | Р | 0 | | | | Commissioning Meetings | | А | P | P | 0 | | | | Project Progress Meetings | P | А | P | L | 0 | | | | Controls Meeting | L | А | Р | Р | 0 | | | | | | | | | | | | Coordination | Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support the OPR and BOD. | L | A | P | P | N/A | | | | | | | | | | | | Cx Plan & Spec | Final Commissioning Plan | L | А | R | R | 0 | | | | | | | | | | | | Schedules | Duration Schedule for Commissioning Activities | L | А | R | R | N/A | | | | | | | | | | | | Construction Phase | | | CxA = Commissioning Agent | | | | L = Lead | |-------------------------|---|--------|---------------------------|--------|--------|------|-----------------| | | | COR = | Contra | cting | Office | er's | P = Participate | | | | Repres | entati | ve | | | A = Approve | | Commissioning R | oles & Responsibilities | A/E = | Design | Arch | Engine | eer | R = Review | | | | PC = P | rime C | ontrad | ctor | | O = Optional | | | | O&M = | Gov't | Facili | ty O&N | N | | | Category | Task Description | CxA | COR | A/E | PC | M&O | Notes | | OPR and BOD | Maintain OPR on behalf of Owner | L | А | R | R | 0 | | | | Maintain BOD/DID on behalf of Owner | L | А | R | R | 0 | | | | | | | | | | | | Document | TAB Plan Review | | А | R | R | 0 | | | Reviews | Submittal and Shop Drawing Review | R | А | R | L | 0 | | | | Review Contractor Equipment Startup
Checklists | L | А | R | R | N/A | | | | Review Change Orders, ASI, and RFI | L | А | R | R | N/A | Site
Observations | Witness Factory Testing | P | A | P | L | 0 | | | Observations | Construction Observation Site Visits | L | А | R | R | 0 | Functional | Final Pre-Functional Checklists | L | A | R | R | 0 | | | Test Protocols | Final Functional Performance Test
Protocols | L | А | R | R | 0 | | | | | | | | | | | | Technical
Activities | Issues Resolution Meetings | P | A | P | L | 0 | | | 11001 1 1 0 1 0 0 | | | | | | | | | Construction F | Construction Phase | | | sionin | nt | L = Lead | | |--|-----------------------------------|--------|---------------------|--------|--------|--------------|-----------------| | | | COR = | Contra | cting | Office | er's | P = Participate | | | | Repres | entati [.] | ve | | | A = Approve | | Commissioning Roles & Responsibilities | | A/E = | Design | Arch/ | Engine | eer | R = Review | | | | | rime C | ontrac | | O = Optional | | | | | O&M = | Gov't | Facili | N. | | | | Category | Task Description | CxA | COR | A/E | PC | O&M | Notes | | Reports and | Status Reports | L | A | R | R | 0 | | | Logs | Maintain Commissioning Issues Log | L | A | R | R | 0 | | | | | | | | | | | B. The following table outlines the roles and responsibilities for the Commissioning Team members during the Acceptance Phase: | Acceptance Phas | Acceptance Phase | | CxA = Commissioning Agent | | | | L = Lead | |-----------------|--|--------------------------|---------------------------|--------|---------|-------|-----------------| | | | | | acting | g Offic | cer's | P = Participate | | | | Repres | entat | ive | | | A = Approve | | Commissioning F | Roles & Responsibilities | A/E = | Desig | n Arcl | n/Engi | neer | R = Review | | | | PC = P | rime | Contra | actor | | O = Optional | | | | O&M = Gov't Facility O&M | | | | | o opozonaz | | Category | Task Description | CxA | COR | A/E | PC | O&M | Notes | | Meetings | Commissioning Meetings | L | А | Р | Р | 0 | | | | Project Progress Meetings | P | А | Р | L | 0 | | | | Pre-Test Coordination Meeting | L | A | Р | Р | 0 | | | | Lessons Learned and Commissioning
Report Review Meeting | L | А | Р | Р | 0 | | | | | | | | | | | | Acceptance Phase | | | CxA = Commissioning Agent | | | | L = Lead | |--|--|-----|---|-----|----|-----|---| | Commissioning Roles & Responsibilities | | | COR = Contracting Officer's Representative A/E = Design Arch/Engineer PC = Prime Contractor O&M = Gov't Facility O&M | | | | P = Participate A = Approve R = Review O = Optional | | Category | Task Description | CxA | COR | A/E | PC | O&M | Notes | | Coordination | Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support OPR and BOD | L | P | P | P | 0 | | | _ | | | | | | | | | Cx Plan & Spec | Maintain/Update Commissioning Plan | L | A | R | R | 0 | | | Schedules | Prepare Functional Test Schedule | | А | R | R | 0 | | | OPR and BOD | Maintain OPR on behalf of Owner | L | А | R | R | 0 | | | | Maintain BOD/DID on behalf of Owner | L | А | R | R | 0 | | | Document
Reviews | Review Completed Pre-Functional
Checklists | L | А | R | R | 0 | | | | Pre-Functional Checklist Verification | L | А | R | R | 0 | | | | Review Operations & Maintenance Manuals | L | А | R | R | R | | | | Training Plan Review | L | А | R | R | R | | | | Warranty Review | L | А | R | R | 0 | | | | Review TAB Report | L | А | R | R | 0 | | | Site | Construction Observation Site Visits | L | A | R | R | 0 | | | Observations | Witness Selected Equipment Startup | L | А | R | R | 0 | | | | | | | | | | | | Acceptance Phase | | | CxA = Commissioning Agent | | | | L = Lead | |--|--|---|---------------------------|-----|----|---|----------| | Commissioning Roles & Responsibilities | | COR = Contracting Officer's Representative A/E = Design Arch/Engineer PC = Prime Contractor O&M = Gov't Facility O&M | | | | P = Participate A = Approve R = Review O = Optional | | | Category | Task Description | CxA | COR | A/E | PC | M&O | Notes | | Functional | TAB Verification | L | А | R | R | 0 | | | Test Protocols | Systems Functional Performance Testing | | А | Р | Р | P | | | | Retesting | L | А | P | P | P | | | | | | | | | | | | Technical | Issues Resolution Meetings | P | А | P | L | 0 | | | Activities | Systems Training | L | S | R | Р | P | | | | | | | | | | | | Reports and | Status Reports | L | A | R | R | 0 | | | Logs | Maintain Commissioning Issues Log | L | А
| R | R | 0 | | | | Final Commissioning Report | L | А | R | R | R | | | | Prepare Systems Manuals | L | А | R | R | R | | | | | | | | | | | C. The following table outlines the roles and responsibilities for the Commissioning Team members during the Warranty Phase: | Warranty Phase | | | Commi | ssion | L = Lead | | | |--|--|-----|------------------------|--|---|---|-------| | Commissioning Roles & Responsibilities | | | entat
Desig
rime | acting
ive
n Arch
Contra
Facil | P = Participate A = Approve R = Review O = Optional | | | | Category | Task Description | CxA | CxA COR A/E PC O&M | | | | Notes | | Meetings | Post-Occupancy User Review Meeting | L | А | 0 | Р | P | | | | | | | | | | | | Site
Observations | Periodic Site Visits | L | A | 0 | 0 | P | | | Functional
Test Protocols | Deferred and/or seasonal Testing | L | А | 0 | P | P | | | lest Protocors | | | | | | | | | Technical
Activities | Issues Resolution Meetings | L | S | 0 | 0 | P | | | | Post-Occupancy Warranty Checkup and review of Significant Outstanding Issues | L | A | | R | P | | | Reports and | Final Commissioning Report Amendment | L | А | | R | R | | | Logs | Status Reports | L | А | | R | R | | | | | | | | | | | # 3.2 STARTUP, INITIAL CHECKOUT, AND PRE-FUNCTIONAL CHECKLISTS - A. The following procedures shall apply to all equipment and systems to be commissioned, according to Part 1, Systems to Be Commissioned. - 1. Pre-Functional Checklists are important to ensure that the equipment and systems are hooked up and operational. These ensure that Systems Functional Performance Testing may proceed without unnecessary delays. Each system to be commissioned shall have a full Pre-Functional Checklist completed by the Contractor prior to Systems Functional Performance Testing. No sampling strategies are used. - a. The Pre-Functional Checklist will identify the trades responsible for completing the checklist. The Contractor shall ensure the appropriate trades complete the checklists. - b. The Commissioning Agent will review completed Pre-Functional Checklists and field-verify the accuracy of the completed checklist using sampling techniques. - 2. Startup and Initial Checkout Plan: The Contractor shall develop detailed startup plans for all equipment. The primary role of the Contractor in this process is to ensure that there is written documentation that each of the manufacturer recommended procedures have been completed. Parties responsible for startup shall be identified in the Startup Plan and in the checklist forms. - a. The Contractor shall develop the full startup plan by combining (or adding to) the checklists with the manufacturer's detailed startup and checkout procedures from the O&M manual data and the field checkout sheets normally used by the Contractor. The plan shall include checklists and procedures with specific boxes or lines for recording and documenting the checking and inspections of each procedure and a summary statement with a signature block at the end of the plan. - b. The full startup plan shall at a minimum consist of the following items: - 1) The Pre-Functional Checklists. - 2) The manufacturer's standard written startup procedures copied from the installation manuals with check boxes by each procedure and a signature block added by hand at the end. - 3) The manufacturer's normally used field checkout sheets. - c. The Commissioning Agent will submit the full startup plan to the VA and Contractor for review. Final approval will be by the VA. d. The Contractor shall review and evaluate the procedures and the format for documenting them, noting any procedures that need to be revised or added. #### 3. Sensor and Actuator Calibration - a. All field installed temperature, relative humidity, CO2 and pressure sensors and gages, and all actuators (dampers and valves) on all equipment shall be calibrated using the methods described in Division 21, Division 22, Division 23, Division 26, Division 27, and Division 28 specifications. - b. All procedures used shall be fully documented on the Pre-Functional Checklists or other suitable forms, clearly referencing the procedures followed and written documentation of initial, intermediate and final results. # 4. Execution of Equipment Startup - a. Two weeks prior to equipment startup, the Contractor shall schedule startup and checkout with the VA and Commissioning Agent. The performance of the startup and checkout shall be directed and executed by the Contractor. - b. The Commissioning Agent will observe the startup procedures for selected pieces of primary equipment. - c. The Contractor shall execute startup and provide the VA and Commissioning Agent with a signed and dated copy of the completed startup checklists, and contractor tests. - d. Only individuals that have direct knowledge and witnessed that a line item task on the Startup Checklist was actually performed shall initial or check that item off. It is not acceptable for witnessing supervisors to fill out these forms. #### 3.3 DEFICIENCIES, NONCONFORMANCE, AND APPROVAL IN CHECKLISTS AND STARTUP - A. The Contractor shall clearly list any outstanding items of the initial startup and Pre-Functional Checklist procedures that were not completed successfully, at the bottom of the procedures form or on an attached sheet. The procedures form and any outstanding deficiencies shall be provided to the VA and the Commissioning Agent within two days of completion. - B. The Commissioning Agent will review the report and submit comments to the VA. The Commissioning Agent will work with the Contractor to correct and verify deficiencies or uncompleted items. The Commissioning Agent will involve the VA and others as necessary. The Contractor shall correct all areas that are noncompliant or incomplete in the checklists in a timely manner, and shall notify the VA and Commissioning Agent as soon as outstanding items have been corrected. The Contractor shall submit an updated startup report and a Statement of Correction on the original noncompliance report. When satisfactorily completed, the Commissioning Agent will recommend approval of the checklists and startup of each system to the VA. C. The Contractor shall be responsible for resolution of deficiencies as directed the VA. # 3.4 PHASED COMMISSIONING A. The project may require startup and initial checkout to be executed in phases. This phasing shall be planned and scheduled in a coordination meeting of the VA, Commissioning Agent, and the Contractor. Results will be added to the master construction schedule and the commissioning schedule. #### 3.5 SYSTEMS FUNCTIONAL PERFORMANCE TESTING - A. This paragraph applies to Systems Functional Performance Testing of systems for all referenced specification Divisions. - B. Objectives and Scope: The objective of Systems Functional Performance Testing is to demonstrate that each system is operating according to the Contract Documents. Systems Functional Performance Testing facilitates bringing the systems from a state of substantial completion to full dynamic operation. Additionally, during the testing process, areas of noncompliant performance are identified and corrected, thereby improving the operation and functioning of the systems. In general, each system shall be operated through all modes of operation (seasonal, occupied, unoccupied, warm-up, cool-down, part- and full-load, fire alarm and emergency power) where there is a specified system response. The Contractor shall verify each sequence in the sequences of operation. Proper responses to such modes and conditions as power failure, freeze condition, low oil pressure, no flow, equipment failure, etc. shall also be tested. - C. Development of Systems Functional Performance Test Procedures: Before Systems Functional Performance Test procedures are written, the Contractor shall submit all requested documentation and a current list of change orders affecting equipment or systems, including an updated points list, program code, control sequences and parameters. Using the testing parameters and requirements found in the Contract Documents and approved submittals and shop drawings, the Commissioning Agent will develop specific Systems Functional Test Procedures to verify and document proper operation of each piece of equipment and system to be commissioned. The Contractor shall assist the Commissioning Agent in developing the Systems Functional Performance Test procedures as requested by the Commissioning Agent i.e. by answering questions about equipment, operation, sequences, etc. Prior to execution, the Commissioning Agent will provide a copy of the Systems Functional Performance Test procedures to the VA, the Architect/Engineer, and the Contractor, who shall review the tests for feasibility, safety, equipment and warranty protection. - D. Purpose of Test Procedures: The purpose of each specific Systems Functional Performance Test is to verify and document compliance with the stated criteria of acceptance given on the test form. Representative test formats and examples are found in the Commissioning Plan for this project. (The Commissioning Plan is issued as a separate document and is available for review.) The test procedure forms developed by the Commissioning Agent will include, but not be limited to, the following information: - System and equipment or component name(s) - 2. Equipment location and ID number - 3. Unique test ID number, and reference to unique Pre-Functional Checklists and startup documentation, and ID numbers for the piece of equipment - 4. Date - 5. Project name - 6. Participating parties - 7. A copy of the specification section describing the test requirements - 8. A copy of the specific sequence of operations or other specified parameters being verified -
9. Formulas used in any calculations - 10. Required pretest field measurements - 11. Instructions for setting up the test. - 12. Special cautions, alarm limits, etc. - 13. Specific step-by-step procedures to execute the test, in a clear, sequential and repeatable format - 14. Acceptance criteria of proper performance with a Yes / No check box to allow for clearly marking whether or not proper performance of each part of the test was achieved. - 15. A section for comments. - 16. Signatures and date block for the Commissioning Agent. A place for the Contractor to initial to signify attendance at the test. - E. Test Methods: Systems Functional Performance Testing shall be achieved by manual testing (i.e. persons manipulate the equipment and observe performance) and/or by monitoring the performance and analyzing the results using the control system's trend log capabilities or by standalone data loggers. The Contractor and Commissioning Agent shall determine which method is most appropriate for tests that do not have a method specified. - 1. Simulated Conditions: Simulating conditions (not by an overwritten value) shall be allowed, although timing the testing to experience actual conditions is encouraged wherever practical. - 2. Overwritten Values: Overwriting sensor values to simulate a condition, such as overwriting the outside air temperature reading in a control system to be something other than it really is, shall be allowed, but shall be used with caution and avoided when possible. Such testing methods often can only test a part of a system, as the interactions and responses of other systems will be erroneous or not applicable. Simulating a condition is preferable. e.g., for the above case, by heating the outside air sensor with a hair blower rather than overwriting the value or by altering the appropriate setpoint to see the desired response. Before simulating conditions or overwriting values, sensors, transducers and devices shall have been calibrated. - 3. Simulated Signals: Using a signal generator which creates a simulated signal to test and calibrate transducers and DDC constants is generally recommended over using the sensor to act as the signal generator via simulated conditions or overwritten values. - 4. Altering Setpoints: Rather than overwriting sensor values, and when simulating conditions is difficult, altering setpoints to test a sequence is acceptable. For example, to see the Air Conditioning compressor lockout initiate at an outside air temperature below 12 C (54 F), when the outside air temperature is above 12 C (54 F), - temporarily change the lockout setpoint to be 2 C $(4\ F)$ above the current outside air temperature. - 5. Indirect Indicators: Relying on indirect indicators for responses or performance shall be allowed only after visually and directly verifying and documenting, over the range of the tested parameters, that the indirect readings through the control system represent actual conditions and responses. Much of this verification shall be completed during systems startup and initial checkout. - F. Setup: Each function and test shall be performed under conditions that simulate actual conditions as closely as is practically possible. The Contractor shall provide all necessary materials, system modifications, etc. to produce the necessary flows, pressures, temperatures, etc. necessary to execute the test according to the specified conditions. At completion of the test, the Contractor shall return all affected building equipment and systems, due to these temporary modifications, to their pretest condition. - G. Sampling: No sampling is allowed in completing Pre-Functional Checklists. Sampling is allowed for Systems Functional Performance Test Procedures execution. The Commissioning Agent will determine the sampling rate. If at any point, frequent failures are occurring and testing is becoming more troubleshooting than verification, the Commissioning Agent may stop the testing and require the Contractor to perform and document a checkout of the remaining units, prior to continuing with Systems Functional Performance Testing of the remaining units. - H. Cost of Retesting: The cost associated with expanded sample System Functional Performance Tests shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor. - I. Coordination and Scheduling: The Contractor shall provide a minimum of 7 days' notice to the Commissioning Agent and the VA regarding the completion schedule for the Pre-Functional Checklists and startup of all equipment and systems. The Commissioning Agent will schedule Systems Functional Performance Tests with the Contractor and VA. The Commissioning Agent will witness and document the Systems Functional Performance Testing of systems. The Contractor shall execute the tests in accordance with the Systems Functional Performance Test Procedure. - J. Testing Prerequisites: In general, Systems Functional Performance Testing will be conducted only after Pre-Functional Checklists have been satisfactorily completed. The control system shall be sufficiently tested and approved by the Commissioning Agent and the VA before it is used to verify performance of other components or systems. The air balancing and water balancing shall be completed before Systems Functional Performance Testing of air-related or water-related equipment or systems are scheduled. Systems Functional Performance Testing will proceed from components to subsystems to systems. When the proper performance of all interacting individual systems has been achieved, the interface or coordinated responses between systems will be checked. - K. Problem Solving: The Commissioning Agent will recommend solutions to problems found, however the burden of responsibility to solve, correct and retest problems is with the Contractor. ## 3.6 DOCUMENTATION, NONCONFORMANCE AND APPROVAL OF TESTS - A. Documentation: The Commissioning Agent will witness, and document the results of all Systems Functional Performance Tests using the specific procedural forms developed by the Commissioning Agent for that purpose. Prior to testing, the Commissioning Agent will provide these forms to the VA and the Contractor for review and approval. The Contractor shall include the filled out forms with the O&M manual data. - B. Nonconformance: The Commissioning Agent will record the results of the Systems Functional Performance Tests on the procedure or test form. All items of nonconformance issues will be noted and reported to the VA on Commissioning Field Reports and/or the Commissioning Master Issues Log. - Corrections of minor items of noncompliance identified may be made during the tests. In such cases, the item of noncompliance and resolution shall be documented on the Systems Functional Test Procedure. - 2. Every effort shall be made to expedite the systems functional Performance Testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the Commissioning Agent shall not be pressured into overlooking noncompliant work or loosening acceptance criteria to satisfy scheduling or cost issues, unless there is an overriding reason to do so by direction from the VA. - 3. As the Systems Functional Performance Tests progresses and an item of noncompliance is identified, the Commissioning Agent shall discuss the issue with the Contractor and the VA. - 4. When there is no dispute on an item of noncompliance, and the Contractor accepts responsibility to correct it: - a. The Commissioning Agent will document the item of noncompliance and the Contractor's response and/or intentions. The Systems Functional Performance Test then continues or proceeds to another test or sequence. After the day's work is complete, the Commissioning Agent will submit a Commissioning Field Report to the VA. The Commissioning Agent will also note items of noncompliance and the Contractor's response in the Master Commissioning Issues Log. The Contractor shall correct the item of noncompliance and report completion to the VA and the Commissioning Agent. - b. The need for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test and the test shall be repeated. - 5. If there is a dispute about item of noncompliance, regarding whether it is an item of noncompliance, or who is responsible: - a. The item of noncompliance shall be documented on the test form with the Contractor's response. The item of noncompliance with the Contractor's response shall also be reported on a Commissioning Field Report and on the Master Commissioning Issues Log. - b. Resolutions shall be made at the lowest management level possible. Other parties are brought into the discussions as needed. Final interpretive and acceptance authority is with the Department of Veterans Affairs. - c. The Commissioning Agent will document the resolution process. - d. Once the interpretation and resolution have been decided, the Contractor shall correct the item of noncompliance, report it to the Commissioning Agent. The requirement for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test. Retesting shall be repeated until satisfactory performance is achieved. - C. Cost of Retesting: The cost to retest a System Functional Performance Test shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor. - D. Failure Due to Manufacturer Defect: If 10%, or three, whichever is greater, of identical pieces (size alone does not constitute a difference) of equipment fail to perform in compliance with the Contract Documents
(mechanically or substantively) due to manufacturing defect, not allowing it to meet its submitted performance specifications, all identical units may be considered unacceptable by the VA. In such case, the Contractor shall provide the VA with the following: - Within one week of notification from the VA, the Contractor shall examine all other identical units making a record of the findings. The findings shall be provided to the VA within two weeks of the original notice. - 2. Within two weeks of the original notification, the Contractor shall provide a signed and dated, written explanation of the problem, cause of failures, etc. and all proposed solutions which shall include full equipment submittals. The proposed solutions shall not significantly exceed the specification requirements of the original installation. - 3. The VA shall determine whether a replacement of all identical units or a repair is acceptable. - 4. Two examples of the proposed solution shall be installed by the Contractor and the VA shall be allowed to test the installations for up to one week, upon which the VA will decide whether to accept the solution. - 5. Upon acceptance, the Contractor shall replace or repair all identical items, at their expense and extend the warranty accordingly, if the original equipment warranty had begun. The replacement/repair work shall proceed with reasonable speed beginning within one week from when parts can be obtained. - E. Approval: The Commissioning Agent will note each satisfactorily demonstrated function on the test form. Formal approval of the Systems Functional Performance Test shall be made later after review by the Commissioning Agent and by the VA. The Commissioning Agent will evaluate each test and report to the VA using a standard form. The VA will give final approval on each test using the same form, and provide signed copies to the Commissioning Agent and the Contractor. ## 3.7 DEFERRED TESTING - A. Unforeseen Deferred Systems Functional Performance Tests: If any Systems Functional Performance Test cannot be completed due to the building structure, required occupancy condition or other conditions, execution of the Systems Functional Performance Testing may be delayed upon approval of the VA. These Systems Functional Performance Tests shall be conducted in the same manner as the seasonal tests as soon as possible. Services of the Contractor to conduct these unforeseen Deferred Systems Functional Performance Tests shall be negotiated between the VA and the Contractor. - B. Deferred Seasonal Testing: Deferred Seasonal Systems Functional Performance Tests are those that must be deferred until weather conditions are closer to the systems design parameters. The Commissioning Agent will review systems parameters and recommend which Systems Functional Performance Tests should be deferred until weather conditions more closely match systems parameters. The Contractor shall review and comment on the proposed schedule for Deferred Seasonal Testing. The VA will review and approve the schedule for Deferred Seasonal Testing. Deferred Seasonal Systems Functional Performances Tests shall be witnessed and documented by the Commissioning Agent. Deferred Seasonal Systems Functional Performance Tests shall be executed by the Contractor in accordance with these specifications. #### 3.8 OPERATION AND MAINTENANCE TRAINING REQUIREMENTS - A. Training Preparation Conference: Before operation and maintenance training, the Commissioning Agent will convene a training preparation conference to include VA's COR, VA's Operations and Maintenance personnel, and the Contractor. The purpose of this conference will be to discuss and plan for Training and Demonstration of VA Operations and Maintenance personnel. - B. The Contractor shall provide training and demonstration as required by other Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 sections. The Training and Demonstration shall include, but is not limited to, the following: - 1. Review the Contract Documents. - 2. Review installed systems, subsystems, and equipment. - 3. Review instructor qualifications. - 4. Review instructional methods and procedures. - 5. Review training module outlines and contents. - 6. Review course materials (including operation and maintenance manuals). - 7. Review and discuss locations and other facilities required for instruction. - 8. Review and finalize training schedule and verify availability of educational materials, instructors, audiovisual equipment, and facilities needed to avoid delays. - For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable. - C. Training Module Submittals: The Contractor shall submit the following information to the VA and the Commissioning Agent: - 1. Instruction Program: Submit two copies of outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module. At completion of training, submit two complete training manuals for VA's use. - 2. Qualification Data: Submit qualifications for facilitator and/or instructor. - 3. Attendance Record: For each training module, submit list of participants and length of instruction time. - 4. Evaluations: For each participant and for each training module, submit results and documentation of performance-based test. - 5. Demonstration and Training Recording: - a. General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline. - b. Video Format: Provide high quality color DVD color on standard size DVD disks. - c. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time. - d. Narration: Describe scenes on video recording by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction. - e. Submit two copies within seven days of end of each training module. - 6. Transcript: Prepared on 8-1/2-by-11-inch paper, punched and bound in heavy-duty, 3-ring, vinyl-covered binders. Mark appropriate identification on front and spine of each binder. Include a cover sheet with same label information as the corresponding videotape. Include name of Project and date of videotape on each page. ## D. Quality Assurance: - 1. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance. - 2. Instructor Qualifications: A factory authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training. - 3. Photographer Qualifications: A professional photographer who is experienced photographing construction projects. ## E. Training Coordination: - 1. Coordinate instruction schedule with VA's operations. Adjust schedule as required to minimize disrupting VA's operations. - Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content. - 3. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by the VA. # F. Instruction Program: - 1. Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual Specification Sections, and as follows: - a. Fire protection systems, including fire alarm, fire pumps, and fire suppression systems. - b. Intrusion detection systems. - c. Conveying systems, including elevators, wheelchair lifts, escalators, and automated materials handling systems. - d. Medical equipment, including medical gas equipment and piping. - e. Laboratory equipment, including laboratory air and vacuum equipment and piping. - f. Heat generation, including boilers, feedwater equipment, pumps, steam distribution piping, condensate return systems, heating hot water heat exchangers, and heating hot water distribution piping. - g. Refrigeration systems, including chillers, cooling towers, condensers, pumps, and distribution piping. - h. HVAC systems, including air handling equipment, air distribution systems, and terminal equipment and devices. - i. HVAC instrumentation and controls. - j. Electrical service and distribution, including switchgear, transformers, switchboards, panelboards, uninterruptible power supplies, and motor controls. - k. Packaged engine generators, including synchronizing switchgear/switchboards, and transfer switches. - 1. Lighting equipment and controls. - m. Communication systems, including intercommunication, surveillance, nurse call systems, public address, mass evacuation, voice and data, and entertainment television equipment. - n. Site utilities including lift stations, condensate pumping and return systems, and storm water pumping systems. - G. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participants are expected to master. For each module, include
instruction for the following: - 1. Basis of System Design, Operational Requirements, and Criteria: Include the following: - a. System, subsystem, and equipment descriptions. - b. Performance and design criteria if Contractor is delegated design responsibility. - c. Operating standards. - d. Regulatory requirements. - e. Equipment function. - f. Operating characteristics. - g. Limiting conditions. - H, Performance curves. - 2. Documentation: Review the following items in detail: - a. Emergency manuals. - b. Operations manuals. - c. Maintenance manuals. - d. Project Record Documents. - e. Identification systems. - f. Warranties and bonds. - g. Maintenance service agreements and similar continuing commitments. - 3. Emergencies: Include the following, as applicable: - a. Instructions on meaning of warnings, trouble indications, and error messages. - b. Instructions on stopping. - c. Shutdown instructions for each type of emergency. - d. Operating instructions for conditions outside of normal operating limits. - e. Sequences for electric or electronic systems. - f. Special operating instructions and procedures. - 4. Operations: Include the following, as applicable: - a. Startup procedures. - b. Equipment or system break-in procedures. - c. Routine and normal operating instructions. - d. Regulation and control procedures. - e. Control sequences. - f. Safety procedures. - g. Instructions on stopping. - h. Normal shutdown instructions. - i. Operating procedures for emergencies. - j. Operating procedures for system, subsystem, or equipment failure. - k. Seasonal and weekend operating instructions. - 1. Required sequences for electric or electronic systems. - m. Special operating instructions and procedures. - 5. Adjustments: Include the following: - a. Alignments. - b. Checking adjustments. - c. Noise and vibration adjustments. - d. Economy and efficiency adjustments. - 6. Troubleshooting: Include the following: - a. Diagnostic instructions. - b. Test and inspection procedures. - 7. Maintenance: Include the following: - a. Inspection procedures. - b. Types of cleaning agents to be used and methods of cleaning. - c. List of cleaning agents and methods of cleaning detrimental to product. - d. Procedures for routine cleaning - e. Procedures for preventive maintenance. - f. Procedures for routine maintenance. - g. Instruction on use of special tools. - 8. Repairs: Include the following: - a. Diagnosis instructions. - b. Repair instructions. - c. Disassembly; component removal, repair, and replacement; and reassembly instructions. - d. Instructions for identifying parts and components. - e. Review of spare parts needed for operation and maintenance. #### H. Training Execution: - Preparation: Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a combined training manual. Set up instructional equipment at instruction location. - 2. Instruction: - a. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Department of Veterans Affairs for number of participants, instruction times, and location. - b. Instructor: Engage qualified instructors to instruct VA's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system. - 1) The Commissioning Agent will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements. - 2) The VA will furnish an instructor to describe VA's operational philosophy. - 3) The VA will furnish the Contractor with names and positions of participants. - 3. Scheduling: Provide instruction at mutually agreed times. For equipment that requires seasonal operation, provide similar instruction at start of each season. Schedule training with the VA and the Commissioning Agent with at least seven days' advance notice. - 4. Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of an oral, or a written, performance-based test. - 5. Cleanup: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use. - I. Demonstration and Training Recording: - 1. General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline. - 2. Video Format: Provide high quality color DVD color on standard size DVD disks. - 3. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time. - 4. Narration: Describe scenes on videotape by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction. ---- END ----- THIS PAGE WAS INTENTIONALLY LEFT BLANK # SECTION 03 30 53 (SHORT-FORM) CAST-IN-PLACE CONCRETE ## PART 1 - GENERAL ## 1.1 DESCRIPTION: This section specifies cast-in-place structural concrete and material and mixes for other concrete. #### 1.2 RELATED WORK: - A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES. - B. Concrete roads, walks, and similar exterior site work: Section 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS. #### 1.3 TOLERANCES: - A. ACI 117. - B. Slab Finishes: ACI 117, F-number method in accordance with ASTM E1155. # 1.4 REGULATORY REQUIREMENTS: - A. ACI SP-66 ACI Detailing Manual - B. ACI 318 Building Code Requirements for Reinforced Concrete. #### 1.5 SUBMITTALS: - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Concrete Mix Design. - C. Shop Drawings: Reinforcing steel: Complete shop drawings. - D. Manufacturer's Certificates: Air-entraining admixture, chemical admixtures, curing compounds. # 1.6 APPLICABLE PUBLICATIONS: - A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. - B. American Concrete Institute (ACI): | 117-10Specification for Tolerances for Concrete | |--| | Construction, Materials and Commentary | | 211.1-91(R2009)Standard Practice for Proportions for Normal, | | Heavyweight, and Mass Concrete | | 211.2-98(R2004)Standard Practice for Selecting Proportions for | | Structural Lightweight Concrete | | 301-10Specifications for Structural Concrete | | 305.1-06Specification for Hot Weather Concreting | | 306.1-90(R2002)Standard Specification for Cold Weather | | | Concreting | | SP-66-04ACI Detailing Manual | |----|---| | | 318-11Building Code Requirements for Structural | | | Concrete and Commentary | | | 347-04Guide to Formwork for Concrete | | C. | American Society for Testing And Materials (ASTM): | | | A185/A185M-07Standard Specification for Steel Welded Wire | | | Reinforcement, Plain, for Concrete Reinforcement | | | A615/A615M-09Standard Specification for Deformed and Plain | | | Carbon Steel Bars for Concrete Reinforcement | | | A996/A996M-09Standard Specification for Rail Steel and Axle | | | Steel Deformed Bars for Concrete Reinforcement | | | C31/C31M-10Standard Practice for Making and Curing Concrete | | | Test Specimens in the Field | | | C33/C33M-11aStandard Specification for Concrete Aggregates | | | C39/C39M-12Standard Test Method for Compressive Strength of | | | Cylindrical Concrete Specimens | | | C94/C94M-12Standard Specification for Ready Mixed Concrete | | | C143/C143M-10Standard Test Method for Slump of Hydraulic | | | Cement Concrete | | | C150-11Standard Specification for Portland Cement | | | C171-07Standard Specification for Sheet Material for | | | Curing Concrete | | | C172-10Standard Practice for Sampling Freshly Mixed | | | Concrete | | | C173-10Standard Test Method for Air Content of Freshly | | | Mixed Concrete by the Volumetric Method | | | C192/C192M-07Standard Practice for Making and Curing Concrete | | | Test Specimens in the Laboratory | | | C231-10Standard Test Method for Air Content of Freshly | | | Mixed Concrete by the Pressure Method | | | C260-10Standard Specification for Air-Entraining | | | Admixtures for Concrete | | | C330-09Standard Specification for Lightweight | | | Aggregates for Structural Concrete | | | C494/C494M-11Standard Specification for Chemical Admixtures | | | for Concrete | | | C618-12Standard Specification for Coal Fly Ash and Raw | | | or Calcined Natural Pozzolan for Use in Concrete | | | D1751-04(R2008)Standard Specification for Preformed Expansion | | | Joint Fillers for Concrete Paving and Structural | Construction (Non-extruding and Resilient Bituminous Types) D4397-10......Standard Specification for Polyethylene Sheeting for Construction, Industrial and Agricultural Applications E1155-96(2008)......Standard Test Method for Determining F_F Floor Flatness and F_L Floor Levelness Numbers ## PART 2 - PRODUCTS #### 2.1 FORMS: Wood, plywood, metal, or other materials, approved by Contracting Officer's Representative (COR), of grade or type suitable to obtain type of finish specified. ## 2.2 MATERIALS: - A. Portland Cement: ASTM C150, Type I or II. - B. Fly Ash: ASTM C618, Class C or F including supplementary optional requirements relating to reactive aggregates and alkalis, and loss on ignition (LOI) not to exceed 5 percent. - C. Coarse Aggregate: ASTM C33, Size 67. Size 467 may be used for footings
and walls over 300 mm (12 inches) thick. Coarse aggregate for applied topping and metal pan stair fill shall be Size 7. - D. Fine Aggregate: ASTM C33. - E. Lightweight Aggregate for Structural Concrete: ASTM C330, Table 1 - F. Mixing Water: Fresh, clean, and potable. - G. Air-Entraining Admixture: ASTM C260. - H. Chemical Admixtures: ASTM C494. - I. Vapor Barrier: ASTM D4397, 0.25 mm (10 mil). - J. Reinforcing Steel: ASTM A615 or ASTM A996, deformed. See structural drawings for grade. - K. Welded Wire Fabric: ASTM A185. - L. Expansion Joint Filler: ASTM D1751. - M. Sheet Materials for Curing Concrete: ASTM C171. - N. Abrasive Aggregates: Aluminum oxide grains or emery grits. - O. Liquid Densifier/Sealer: 100 percent active colorless aqueous siliconate solution. - P. Grout, Non-Shrinking: Premixed ferrous or non-ferrous, mixed and applied in accordance with manufacturer's recommendations. Grout shall show no settlement or vertical drying shrinkage at 3 days or thereafter based on initial measurement made at time of placement, and produce a compressive strength of at least 18mpa (2500 psi) at 3 days and 35mpa (5000 psi) at 28 days. ## 2.3 CONCRETE MIXES: - A. Design of concrete mixes using materials specified shall be the responsibility of the Contractor as set forth under Option C of ASTM C94. - B. Compressive strength at 28 days shall be not less than 3000 psi. For vault construction, compressive strength at 28 days shall not be less than 4000 psi. - C. Establish strength of concrete by testing prior to beginning concreting operation. Test consists of average of three cylinders made and cured in accordance with ASTM C192 and tested in accordance with ASTM C39. - D. Maximum slump for vibrated concrete is 100 mm (4 inches) tested in accordance with ASTM C143. - E. Cement and water factor (See Table I): | Concrete: Strength | Non-Air-E | Entrained | Air-Er | ntrained | |--|------------------------------|----------------------------|-------------------------------------|----------------------------| | Min. 28 Day Comp.
Str.
MPa (psi) | Min. Cement kg/m³(lbs/c. yd) | Max. Water
Cement Ratio | Min. Cement
kg/m³
(lbs/c. yd) | Max. Water
Cement Ratio | | 35 (5000) ^{1,3} | 375 (630) | 0.45 | 385 (650) | 0.40 | | 30 (4000) ^{1,3} | 325 (550) | 0.55 | 340 (570) | 0.50 | | 25 (3000) ^{1,3} | 280 (470) | 0.65 | 290 (490) | 0.55 | | 25 (3000) ^{1,2} | 300 (500) | * | 310 (520) | * | TABLE I - CEMENT AND WATER FACTORS FOR CONCRETE - 1. If trial mixes are used, the proposed mix design shall achieve a compressive strength 8.3 MPa (1200 psi) in excess of f'c. For concrete strengths above 35 Mpa (5000 psi), the proposed mix design shall achieve a compressive strength 9.7 MPa (1400 psi) in excess of f'c. - 2. For concrete exposed to high sulfate content soils maximum water cement ratio is 0.44. - 3. Determined by Laboratory in accordance with ACI 211.1 for normal concrete or ACI 211.2 for lightweight structural concrete. - F. Air-entrainment is required for all exterior concrete and as required for Section 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS. Air content shall conform with the following table: | | TABLE | I - TOT | 'AL AIR CONT | ENT | | |-------------|---------|----------|--------------|---------|-----------| | FOR VARIOUS | SIZES O | F COARSE | AGGREGATES | (NORMAL | CONCRETE) | | Nominal Maximum Size of | Total Air Content | |-------------------------|----------------------| | Coarse Aggregate | Percentage by Volume | | 10 mm (3/8 in) | 6 to 10 | | 13 mm (1/2 in) | 5 to 9 | | 19 mm (3/4 in) | 4 to 8 | | 25 mm (1 in) | 3 1/2 to 6 1/2 | | 40 mm (1 1/2 in) | 3 to 6 | #### 2.4 BATCHING & MIXING: - A. Store, batch, and mix materials as specified in ASTM C94. - 1. Job-Mixed: Concrete mixed at job site shall be mixed in a batch mixer in manner specified for stationary mixers in ASTM C94. - 2. Ready-Mixed: Ready-mixed concrete comply with ASTM C94, except use of non-agitating equipment for transporting concrete to the site will not be permitted. With each load of concrete delivered to project, ready-mixed concrete producer shall furnish, in duplicate, certification as required by ASTM C94. - 3. Mixing structural lightweight concrete: Charge mixer with 2/3 of total mixing water and all of the aggregate. Mix ingredients for not less than 30 seconds in a stationary mixer or not less than 10 revolutions at mixing speed in a truck mixer. Add remaining mixing water and other ingredients and continue mixing. Above procedure may be modified as recommended by aggregate producer. ## PART 3 - EXECUTION # 3.1 FORMWORK: - A. Installation conform to ACI 347. Sufficiently tight to hold concrete without leakage, sufficiently braced to withstand vibration of concrete, and to carry, without appreciable deflection, all dead and live loads to which they may be subjected. - B. Treating and Wetting: Treat or wet contact forms as follows: - Coat plywood and board forms with non-staining form sealer. In hot weather cool forms by wetting with cool water just before concrete is placed. - 2. Clean and coat removable metal forms with light form oil before reinforcement is placed. In hot weather cool metal forms by thoroughly wetting with water just before placing concrete. - 3. Use sealer on reused plywood forms as specified for new material. C. Inserts, sleeves, and similar items: Flashing reglets, masonry ties, anchors, inserts, wires, hangers, sleeves, boxes for floor hinges and other items specified as furnished under this and other sections of specifications and required to be in their final position at time concrete is placed shall be properly located, accurately positioned and built into construction, and maintained securely in place. ## D. Construction Tolerances: - 1. Contractor is responsible for setting and maintaining concrete formwork to assure erection of completed work within tolerances specified to accommodate installation or other rough and finish materials. Remedial work necessary for correcting excessive tolerances is the responsibility of the Contractor. Erected work that exceeds specified tolerance limits shall be remedied or removed and replaced, at no additional cost to the Government. - 2. Permissible surface irregularities for various classes of materials are defined as "finishes" in specification sections covering individual materials. They are to be distinguished from tolerances specified which are applicable to surface irregularities of structural elements. #### 3.2 REINFORCEMENT: Details of concrete reinforcement, unless otherwise shown, in accordance with ACI 318 and ACI SP-66. Support and securely tie reinforcing steel to prevent displacement during placing of concrete. ## 3.3 VAPOR BARRIER: - A. Except where membrane waterproofing is required, place interior concrete slabs on a continuous vapor barrier. - B. Place 100 mm (4 inches) of fine granular fill over the vapor barrier to act as a blotter for concrete slab. - C. Lap joints 150 mm (6 inches) and seal with a compatible pressure-sensitive tape. - D. Patch punctures and tears. ### 3.4 PLACING CONCRETE: - A. Remove water from excavations before concrete is placed. Remove hardened concrete, debris and other foreign materials from interior of forms, and from inside of mixing and conveying equipment. Obtain approval of COR before placing concrete. Provide screeds at required elevations for concrete slabs. - B. Before placing new concrete on or against concrete which has set, existing surfaces shall be roughened and cleaned free from all laitance, foreign matter, and loose particles. - C. Convey concrete from mixer to final place of deposit by method which will prevent segregation or loss of ingredients. Do not deposit in work concrete that has attained its initial set or has contained its water or cement more than 1 1/2 hours. Do not allow concrete to drop freely more than 1500 mm (5 feet) in unexposed work nor more than 900 mm (3 feet) in exposed work. Place and consolidate concrete in horizontal layers not exceeding 300 mm (12 inches) in thickness. Consolidate concrete by spading, rodding, and mechanical vibrator. Do not secure vibrator to forms or reinforcement. Vibration shall be carried on continuously with placing of concrete. - D. Hot weather placing of concrete: Follow recommendations of ACI 305R to prevent problems in the manufacturing, placing, and curing of concrete that can adversely affect the properties and serviceability of the hardened concrete. - E. Cold weather placing of concrete: Follow recommendations of ACI 306R, to prevent freezing of thin sections less than 300 mm (12 inches) and to permit concrete to gain strength properly, except that use of calcium chloride shall not be permitted without written approval from COR. ## 3.5 PROTECTION AND CURING: Protect exposed surfaces of concrete from premature drying, wash by rain or running water, wind, mechanical injury, and excessively hot or cold temperature. Curing method shall be subject to approval by COR. # 3.6 FORM REMOVAL: Forms remain in place until concrete has a sufficient strength to carry its own weight and loads supported. Removal of forms at any time is the Contractor's sole responsibility. # 3.7 SURFACE PREPARATION: Immediately after forms have been removed and work has been examined and approved by COR, remove loose materials, and patch all stone pockets, surface honeycomb, or similar deficiencies with cement mortar made with 1 part portland cement and 2 to 3 parts sand. # 3.8 FINISHES: - A. Vertical and Overhead Surface Finishes: - Unfinished Areas: Vertical and overhead concrete surfaces exposed in unfinished areas, above suspended ceilings in manholes, and other unfinished areas exposed or concealed will not require additional finishing. - 2. Interior and Exterior Exposed Areas (to be painted): Fins, burrs and similar projections on surface shall be knocked off flush by mechanical means approved by COR and rubbed lightly
with a fine - abrasive stone or hone. Use an ample amount of water during rubbing without working up a lather of mortar or changing texture of concrete. - 3. Interior and Exterior Exposed Areas (finished): Finished areas, unless otherwise shown, shall be given a grout finish of uniform color and shall have a smooth finish treated as follows: - a. After concrete has hardened and laitance, fins and burrs have been removed, scrub concrete with wire brushes. Clean stained concrete surfaces by use of a hone or stone. - b. Apply grout composed of 1 part portland cement and 1 part clean, fine sand (smaller than 600 micro-m (No. 30) sieve). Work grout into surface of concrete with cork floats or fiber brushes until all pits and honeycomb are filled. - c. After grout has hardened, but still plastic, remove surplus grout with a sponge rubber float and by rubbing with clean burlap. - d. In hot, dry weather use a fog spray to keep grout wet during setting period. Complete finish for any area in same day. Confine limits of finished areas to natural breaks in wall surface. Do not leave grout on concrete surface overnight. ## B. Slab Finishes: - 1. Scratch Finish: Slab surfaces to receive a bonded applied cementitious application shall all be thoroughly raked or wire broomed after partial setting (within 2 hours after placing) to roughen surface to insure a permanent bond between base slab and applied cementitious materials. - 2. Floating: Allow water brought to surface by float used for rough finishing to evaporate before surface is again floated or troweled. Do not sprinkle dry cement on surface to absorb water. - 3. Float Finish: Ramps, stair treads, and platforms, both interior and exterior, equipment pads, and slabs to receive non-cementitious materials, except as specified, shall be screened and floated to a smooth dense finish. After first floating, while surface is still soft, surfaces shall be checked for alignment using a straightedge or template. Correct high spots by cutting down with a trowel or similar tool and correct low spots by filling in with material of same composition as floor finish. Remove any surface projections on floated finish by rubbing or dry grinding. Refloat the slab to a uniform sandy texture. - 4. Steel Trowel Finish: Applied toppings, concrete surfaces to receive resilient floor covering or carpet, future floor roof and all monolithic concrete floor slabs exposed in finished work and for which no other finish is shown or specified shall be steel troweled. Final steel troweling to secure a smooth, dense surface shall be delayed as long as possible, generally when the surface can no longer be dented with finger. During final troweling, tilt steel trowel at a slight angle and exert heavy pressure on trowel to compact cement paste and form a dense, smooth surface. Finished surface shall be free of trowel marks, uniform in texture and appearance. 5. Broom Finish: Finish all exterior slabs, ramps, and stair treads with a bristle brush moistened with clear water after the surfaces have been floated. #### 3.9 SURFACE TREATMENTS: A. Surface treatments shall be mixed and applied in accordance with manufacturer's printed instructions. # 3.10 APPLIED TOPPING: - A. Separate concrete topping with thickness and strength shown with only enough water to insure a stiff, workable, plastic mix. - B. Continuously place applied topping until entire section is complete, struck off with straightedge, compact by rolling or tamping, float and steel trowel to a hard smooth finish. ## 3.11 RETAINING WALLS: - A. Concrete for retaining walls shall be as shown and air-entrained. - B. Install and construct expansion and contraction joints, waterstops, weep holes, reinforcement and railing sleeves as shown. - C. Finish exposed surfaces to match adjacent concrete surfaces, new or existing. - D. Porous backfill shall be placed as shown. # 3.12 PRECAST CONCRETE ITEMS: Precast concrete items, not specified elsewhere, shall be cast using 4000 psi air-entrained concrete to shapes and dimensions shown. Finish surfaces to match corresponding adjacent concrete surfaces. Reinforce with steel as necessary for safe handling and erection. - - - E N D - - - THIS PAGE WAS INTENTIONALLY LEFT BLANK # SECTION 07 84 00 FIRESTOPPING #### PART 1 GENERAL #### 1.1 DESCRIPTION - A. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction. - B. Closure of openings in walls against penetration of gases or smoke in smoke partitions. #### 1.2 RELATED WORK A. Sealants and application: Section 07 92 00, JOINT SEALANTS. #### 1.3 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used. - C. List of FM, UL, or WH classification number of systems installed. - D. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use. # 1.4 DELIVERY AND STORAGE - A. Deliver materials in their original unopened containers with manufacturer's name and product identification. - B. Store in a location providing protection from damage and exposure to the elements. ## 1.5 WARRANTY Firestopping work subject to the terms of the Article "Warranty of Construction", FAR clause 52.246-21, except extend the warranty period to five years. # 1.6 QUALITY ASSURANCE FM, UL, or WH or other approved laboratory tested products will be acceptable. #### 1.7 APPLICABLE PUBLICATIONS - A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. - B. American Society for Testing and Materials (ASTM): E84-10.....Surface Burning Characteristics of Building Materials - E814-11.....Fire Tests of Through-Penetration Fire Stops - C. Factory Mutual Engineering and Research Corporation (FM): Annual Issue Approval Guide Building Materials D. Underwriters Laboratories, Inc. (UL): Annual Issue Building Materials Directory Annual Issue Fire Resistance Directory 1479-10......Fire Tests of Through-Penetration Firestops E. Warnock Hersey (WH): Annual Issue Certification Listings ## PART 2 - PRODUCTS #### 2.1 FIRESTOP SYSTEMS - A. Use either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke. - B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 100 mm (4 in) nominal pipe or 0.01 m² (16 sq. in.) in overall cross sectional area. - C. Products requiring heat activation to seal an opening by its intumescence shall exhibit a demonstrated ability to function as designed to maintain the fire barrier. - D. Firestop sealants used for firestopping or smoke sealing shall have following properties: - 1. Contain no flammable or toxic solvents. - 2. Have no dangerous or flammable out gassing during the drying or curing of products. - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure. - 4. When used in exposed areas, shall be capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface. - E. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials shall have following properties: - 1. Classified for use with the particular type of penetrating material used. - Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal. - 3. Intumescent products which would expand to seal the opening and act as fire, smoke, toxic fumes, and, water sealant. - F. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84. - G. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814. - H. Materials to be asbestos free. #### 2.2 SMOKE STOPPING IN SMOKE PARTITIONS - A. Use silicone sealant in smoke partitions as specified in Section 07 92 00, JOINT SEALANTS. - B. Use mineral fiber filler and bond breaker behind sealant. - C. Sealants shall have a maximum flame spread of 25 and smoke developed of 50 when tested in accordance with E84. - D. When used in exposed areas capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface. # PART 3 - EXECUTION # 3.1 EXAMINATION Submit product data and installation instructions, as required by article, submittals, after an on site examination of areas to receive firestopping. ## 3.2 PREPARATION - A. Remove dirt, grease, oil, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials. - B. Remove insulation on insulated pipe for a distance of 150 mm (six inches) on either side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes. # 3.3 INSTALLATION - A. Do not begin work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved. - B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions. - C. Install smoke stopping seals in smoke partitions. # 3.4 CLEAN-UP AND ACCEPTANCE OF WORK - A. As work on each floor is completed, remove
materials, litter, and debris. - B. Do not move materials and equipment to the next-scheduled work area until completed work is inspected and accepted by the Resident Engineer. - C. Clean up spills of liquid type materials. - - - E N D - - - # SECTION 07 92 00 JOINT SEALANTS #### PART 1 - GENERAL #### 1.1 DESCRIPTION: Section covers all sealant and caulking materials and their application, wherever required for complete installation of building materials or systems. ## 1.2 RELATED WORK: - A. Sealing of site work concrete paving: Section 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS. - B. Firestopping penetrations: Section 07 84 00, FIRESTOPPING. - C. Mechanical Work: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING. # 1.3 QUALITY CONTROL: - A. Installer Qualifications: An experienced installer who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in joint-sealant installations with a record of successful in-service performance. - B. Source Limitations: Obtain each type of joint sealant through one source from a single manufacturer. - C. Product Testing: Obtain test results from a qualified testing agency based on testing current sealant formulations within a 12-month period. - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C1021. - 2. Test elastomeric joint sealants for compliance with requirements specified by reference to ASTM C920, and where applicable, to other standard test methods. - 3. Test elastomeric joint sealants according to SWRI's Sealant Validation Program for compliance with requirements specified by reference to ASTM C920 for adhesion and cohesion under cyclic movement, adhesion-in peel, and indentation hardness. - 4. Test other joint sealants for compliance with requirements indicated by referencing standard specifications and test methods. - D. VOC: Acrylic latex and Silicon sealants shall have less than 50g/l VOC content. # 1.4 SUBMITTALS: A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Manufacturer's installation instructions for each product used. - C. Cured samples of exposed sealants for each color where required to match adjacent material. - D. Manufacturer's Literature and Data: - 1. Caulking compound - 2. Primers - 3. Sealing compound, each type, including compatibility when different sealants are in contact with each other. ## 1.5 PROJECT CONDITIONS: - A. Environmental Limitations: - 1. Do not proceed with installation of joint sealants under following conditions: - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below 4.4 $^{\circ}\text{C}$ (40 $^{\circ}\text{F}$). - b. When joint substrates are wet. - B. Joint-Width Conditions: - Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated. - C. Joint-Substrate Conditions: - Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates. # 1.6 DELIVERY, HANDLING, AND STORAGE: - A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon. - B. Carefully handle and store to prevent inclusion of foreign materials. - C. Do not subject to sustained temperatures exceeding 32° C (90° F) or less than 5° C (40° F). #### 1.7 DEFINITIONS: - A. Definitions of terms in accordance with ASTM C717 and as specified. - B. Back-up Rod: A type of sealant backing. - C. Bond Breakers: A type of sealant backing. - D. Filler: A sealant backing used behind a back-up rod. ## 1.8 WARRANTY: - A. Warranty exterior sealing against leaks, adhesion, and cohesive failure, and subject to terms of "Warranty of Construction", FAR clause 52.246-21, except that warranty period shall be extended to two years. - B. General Warranty: Special warranty specified in this Article shall not deprive Government of other rights Government may have under other provisions of Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of Contract Documents. # 1.9 APPLICABLE PUBLICATIONS: - A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. - B. American Society for Testing and Materials (ASTM): | C509-06 | .Elastomeric | Cellular | Preformed | Gasket | and | | | |-------------------|--------------|----------|-----------|--------|-----|--|--| | Sealing Material. | | | | | | | | | C612-10 | .Mineral | Fiber | Block | and | Board | Thermal | |-------------|----------|-------|-------|-----|-------|---------| | Insulation. | | | | | | | | C717-10Standard | Terminology | of | Building | Seals | and | |-----------------|-------------|----|----------|-------|-----| | Sealants | | | | | | - C834-10.....Latex Sealants. - C919-08......Use of Sealants in Acoustical Applications. - C920-10..... Elastomeric Joint Sealants. - C1021-08.....Laboratories Engaged in Testing of Building Sealants. - C1193-09.....Standard Guide for Use of Joint Sealants. - C1330-02 (R2007)......Cylindrical Sealant Backing for Use with Cold Liquid Applied Sealants. - D1056-07......Specification for Flexible Cellular Materials—Sponge or Expanded Rubber. - E84-09......Surface Burning Characteristics of Building Materials. - C. Sealant, Waterproofing and Restoration Institute (SWRI). The Professionals' Guide # PART 2 - PRODUCTS # 2.1 SEALANTS: - A. S-1: - 1. ASTM C920, polyurethane or polysulfide. - 2. Type M. - 3. Class 25. - 4. Grade NS. - 5. Shore A hardness of 20-40 - B. S-2: - 1. ASTM C920, polyurethane or polysulfide. - 2. Type M. - 3. Class 25. - 4. Grade P. - 5. Shore A hardness of 25-40. - C. S-9: - 1. ASTM C920 silicone. - 2. Type S. - 3. Class 25. - 4. Grade NS. - 5. Shore A hardness of 25-30. - 6. Non-yellowing, mildew resistant. - D. S-11: - 1. ASTM C920 polyurethane. - 2. Type M/S. - 3. Class 25. - 4. Grade P/NS. - 5. Shore A hardness of 35 to 50. - E. S-12: - 1. ASTM C920, polyurethane. - 2. Type M/S. - 3. Class 25, joint movement range of plus or minus 50 percent. - 4. Grade P/NS. - 5. Shore A hardness of 25 to 50. ## 2.2 COLOR: - A. Sealants used with exposed masonry shall match color of mortar joints. - B. Sealants used with unpainted concrete shall match color of adjacent concrete. - C. Color of sealants for other locations shall be light gray or aluminum, unless specified otherwise. - D. Caulking shall be light gray or white, unless specified otherwise. ## 2.3 JOINT SEALANT BACKING: - A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing. - B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance: - 1. Type C: Closed-cell material with a surface skin. - C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056, nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32° C (minus 26° F). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance. - D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide self-adhesive tape where applicable. #### 2.4 FILLER: - A. Mineral fiber board: ASTM C612, Class 1. - B. Thickness same as joint width. - C. Depth to fill void completely behind back-up rod. ## 2.5 PRIMER: - A. As recommended by manufacturer of caulking or sealant material. - B. Stain free type. # 2.6 CLEANERS-NON POUROUS SURFACES: Chemical cleaners acceptable to manufacturer of sealants and sealant backing material, free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates. ## PART 3 - EXECUTION ## 3.1 INSPECTION: - A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant. - B. Coordinate for repair and resolution of unsound substrate materials. C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer. ## 3.2 PREPARATIONS: - A. Prepare joints in accordance with manufacturer's instructions and SWRI. - B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion. - Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. - 2. Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include the following: - a. Concrete. - b. Masonry. - c. Unglazed surfaces of ceramic tile. - 3. Remove laitance and form-release agents from concrete. - 4. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of
joint sealants. - a. Metal. - b. Glass. - c. Porcelain enamel. - d. Glazed surfaces of ceramic tile. - C. Do not cut or damage joint edges. - D. Apply masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds. - 1. Do not leave gaps between ends of sealant backings. - 2. Do not stretch, twist, puncture, or tear sealant backings. - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials. - E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions. - 1. Apply primer prior to installation of back-up rod or bond breaker tape. - 2. Use brush or other approved means that will reach all parts of joints. - F. Take all necessary steps to prevent three sided adhesion of sealants. #### 3.3 BACKING INSTALLATION: - A. Install back-up material, to form joints enclosed on three sides as required for specified depth of sealant. - B. Where deep joints occur, install filler to fill space behind the backup rod and position the rod at proper depth. - C. Cut fillers installed by others to proper depth for installation of back-up rod and sealants. - D. Install back-up rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified. - E. Where space for back-up rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces. - F. Take all necessary steps to prevent three sided adhesion of sealants. #### 3.4 SEALANT DEPTHS AND GEOMETRY: - A. At widths up to 6 mm (1/4 inch), sealant depth equal to width. - B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface. # 3.5 INSTALLATION: # A. General: - 1. Apply sealants and caulking only when ambient temperature is between 5° C and 38° C (40° and 100° F). - 2. Do not use polysulfide base sealants where sealant may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present. - 3. Do not use sealant type listed by manufacture as not suitable for use in locations specified. - 4. Apply caulking and sealing compound in accordance with manufacturer's printed instructions. - 5. Avoid dropping or smearing compound on adjacent surfaces. - 6. Fill joints solidly with compound and finish compound smooth. - 7. Tool joints to concave surface unless shown or specified otherwise. - 8. Finish paving or floor joints flush unless joint is otherwise detailed. - 9. Apply compounds with nozzle size to fit joint width. - 10. Test sealants for compatibility with each other and substrate. Use only compatible sealant. - B. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise. - C. Where gypsum board partitions are of sound rated, fire rated, or smoke barrier construction, follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise. - Apply a 6 mm (1/4 inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction. - 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board. - 3. Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing. - 4. Openings: Apply a 6 mm (1/4 inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes and similar penetrations. To seal electrical boxes, seal sides and backs. - 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint. ## 3.6 FIELD QUALITY CONTROL: A. Inspect joints for complete fill, for absence of voids, and for joint configuration complying with specified requirements. # 3.7 CLEANING: - A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by the caulking or sealant manufacturer. - B. After filling and finishing joints, remove masking tape. - C. Leave adjacent surfaces in a clean and unstained condition. # 3.8 LOCATIONS: - A. Exterior Building Joints, Horizontal and Vertical: - 1. Metal to Metal: Type S-1, S-2 - 2. Metal to Masonry or Stone: Type S-1 - 3. Cast Stone to Cast Stone: Type S-1 - B. Sanitary Joints: - 1. Walls to Plumbing Fixtures: Type S-9 - 2. Pipe Penetrations: Type S-9 - C. Horizontal Traffic Joints: - 1. Concrete Paving, Unit Pavers: Type S-11 or S-12 - - - E N D - - - THIS PAGE WAS INTENTIONALLY LEFT BLANK # SECTION 22 05 11 COMMON WORK RESULTS FOR PLUMBING ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. The requirements of this Section shall apply to all sections of Division 22. - B. Definitions: - 1. Exposed: Piping and equipment exposed to view in finished rooms. - 2. Option or optional: Contractor's choice of an alternate material or method. ## 1.2 RELATED WORK - A. Section 01 00 00, GENERAL REQUIREMENTS. - B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - C. Section 31 20 00, EARTH MOVING: Excavation and Backfill. - D. Section 03 30 53, (Short Form)CAST-IN-PLACE CONCRETE: Concrete and Grout. - E. Section 07 92 00, JOINT SEALANTS. - F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS # 1.3 QUALITY ASSURANCE - A. Products Criteria: - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. - 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These organizations shall come to the site and provide acceptable service to restore operations within four hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Names, mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, critical instrumentation, shall be submitted for - project record and inserted into the operations and maintenance manual. - 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly. - 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Resident Engineer (RE)/Contracting Officers Technical Representative (COTR). - 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer. - 6. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product. - 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment. - 8. Asbestos products or equipment or materials containing asbestos shall not be used. - B. Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements: - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications". - Comply with provisions of ASME B31 series "Code for Pressure Piping". - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current. - 4. All welds shall be stamped according to the provisions of the American Welding Society. - C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Resident Engineer prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material. - D. Execution (Installation, Construction) Quality: - 1. All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract drawings and specifications shall be referred to the RE/COTR for resolution. Written hard copies or computer files of manufacturer's installation instructions shall be provided to the RE/COTR at least two weeks prior to commencing installation of any item. - 2. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved. - E. Guaranty: Warranty of Construction,
FAR clause 52.246-21. - F. Plumbing Systems: IPC, International Plumbing Code. # 1.4 SUBMITTALS - A. Submittals shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMMON WORK RESULTS FOR PLUMBING", with applicable paragraph identification. - C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements. - D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract. - E. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation. # F. Maintenance Data and Operating Instructions: - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment. - 2. Listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided. # 1.5 DELIVERY, STORAGE AND HANDLING ## A. Protection of Equipment: - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage. - Damaged equipment shall be replaced with an identical unit as determined and directed by the RE/COTR. Such replacement shall be at no additional cost to the Government. - 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation. - 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work. # B. Cleanliness of Piping and Equipment Systems: - 1. Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed. - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems. - 3. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC), latest edition. All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance. - 4. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems. ## 1.6 APPLICABLE PUBLICATIONS - A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society of Mechanical Engineers (ASME): Boiler and Pressure Vessel Code (BPVC): SEC IX-2007......Boiler and Pressure Vessel Code; Section IX, Welding and Brazing Qualifications. C. American Society for Testing and Materials (ASTM): A36/A36M-2008......Standard Specification for Carbon Structural Steel A575-96 (R 2007)......Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades R (2002) E84-2005......Standard Test Method for Surface Burning Characteristics of Building Materials E119-2008a.....Standard Test Methods for Fire Tests of Building Construction and Materials - D. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: - SP-58-02......Pipe Hangers and Supports-Materials, Design and Manufacture - SP 69-2003 (R 2004).....Pipe Hangers and Supports-Selection and Application - E. National Electrical Manufacturers Association (NEMA): MG1-2003, Rev. 1-2007...Motors and Generators D. International Code Council, (ICC): IBC-06, (R 2007).....International Building Code IPC-06, (R 2007).....International Plumbing Code # PART 2 - PRODUCTS # 2.1 FACTORY-ASSEMBLED PRODUCTS - A. STANDARDIZATION OF COMPONENTS SHALL BE MAXIMIZED TO REDUCE SPARE PART requirements. - B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit. - 1. All components of an assembled unit need not be products of same manufacturer. - 2. Constituent parts that are alike shall be products of a single manufacturer. - 3. Components shall be compatible with each other and with the total assembly for intended service. - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly. - C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment. - D. Major items of equipment, which serve the same function, shall be the same make and model ## 2.2 COMPATIBILITY OF RELATED EQUIPMENT A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements. # 2.3 ELECTRIC MOTORS, MOTOR CONTROL, CONTROL WIRING A. All material and equipment furnished and installation methods shall conform to the requirements of Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT; Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and, Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). All electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems shall be provided. ## 2.4 EQUIPMENT AND MATERIALS IDENTIFICATION - A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings, or shown in the maintenance manuals. - B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, fans, etc. shall be identified. - C. Control Items: All temperature, pressure, and controllers shall be labeled and the component's function identified. Identify and label each item as they appear on the control diagrams. - D. Valve Tags and Lists: - 1. Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included). 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage, 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain ## 2.8 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS - A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC), latest edition. Submittals based on the International Building Code (IBC), latest edition, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in a state where the project is located. The Support system of suspended equipment over 227 kg (500 pounds) shall be submitted for approval of the Resident Engineer in all cases. See these specifications for lateral force design requirements. - B. For Attachment to Concrete Construction: - 1. Concrete insert: Type 18, MSS SP-58. - 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (4 inches) thick when approved by the Resident Engineer for each job condition. - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (4 inches) thick when approved by the Resident Engineer for each job condition. - C. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable. - D. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds). - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13 mm (1/2-inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger. - E. Pipe Hangers and Supports: (MSS SP-58) - 1. General Types (MSS SP-58): - a. Standard clevis hanger: Type 1; provide locknut. - b. Riser clamps: Type 8. - c. Wall brackets: Types 31, 32 or 33. - d. Roller supports: Type 41, 43, 44 and 46. - e. Saddle support: Type 36, 37 or 38. - f. Turnbuckle: Types 13 or 15. - g. U-bolt clamp: Type 24. - h. Supports for plastic or glass piping: As
recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp. Spring Supports (Expansion and contraction of vertical piping): - 1) Movement up to 20 mm (3/4-inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator. - 2) Movement more than 20 mm (3/4-inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator. - 2. Plumbing Piping (Other Than General Types): - a. Horizontal piping: Type 1, 5, 7, 9, and 10. - b. Chrome plated piping: Chrome plated supports. - c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions. - d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gage) minimum. #### 2.9 PIPE PENETRATIONS - A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays. - B. Pipe penetration sleeve materials shall comply with all fire stopping requirements for each penetration. - C. To prevent accidental liquid spills from passing to a lower level, provide the following: - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint. - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening. - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration. - C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer. - D. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below. - E. Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve. - F. Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel Sleeve shall be provided for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate. - G. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate. - H. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases. - I. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS. # 2.10 TOOLS AND LUBRICANTS - A. Furnish, and turn over to the Resident Engineer, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished. - B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment. - C. Tool Containers: metal, permanently identified for intended service and mounted, or located, where directed by the Resident Engineer. D. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application. #### 2.11 ASBESTOS Materials containing asbestos are not permitted. #### PART 3 - EXECUTION # 3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING - A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review. - Manufacturer's published recommendations shall be followed for installation methods not otherwise specified. - B. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced. - C. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation. - D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations. - E. Cutting Holes: - Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by RE/COTR where working area space is limited. - F. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided. - G. Protection and Cleaning: - 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced. - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment. - H. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 53, (Short Form) CAST-IN-PLACE CONCRETE. shall be used for all pad or floor mounted equipment. Gages, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gages shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work. # I. Work in Existing Building: - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s). - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility. - J. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. # K. Inaccessible Equipment: Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government. 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork. # 3.2 TEMPORARY PIPING AND EQUIPMENT - A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities. - B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Para. 3.1 shall apply. - C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Necessary blind flanges and caps shall be provided to seal open piping remaining in service. # 3.3 PIPE AND EQUIPMENT SUPPORTS - A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the Resident Engineer. - B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be
permitted. Rusty products shall be replaced. - C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work shall be provided. - D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC), latest edition, and these specifications. - E. Overhead Supports: 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead. # F. Floor Supports: - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure. - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting. - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment. #### 3.4 PLUMBING SYSTEMS DEMOLITION - A. In an operating plant, cleanliness and safety shall be maintained. The plant shall be kept in an operating condition. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Work shall be confined to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Dust and debris shall not be permitted to accumulate in the area to the detriment of plant operation. All flame cutting shall be performed to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. All work shall be performed in accordance with recognized fire protection standards. Inspections will be made by personnel of the VA Medical Center, and the Contractor shall follow all directives of the RE or COTR with regard to rigging, safety, fire safety, and maintenance of operations. - B. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled. C. All valves including gate, globe, ball, butterfly and check, shall remain Government property and shall be removed and delivered to RE/COTR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate. #### 3.5 CLEANING AND PAINTING - A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned. - B. In addition, the following special conditions apply: - 1. Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats. - 2. The following Material And Equipment shall NOT be painted:: - a. Motors, controllers, control switches, and safety switches. - b. Control and interlock devices. - c. Regulators. - d. Pressure reducing valves. - e. Control valves and thermostatic elements. - f. Lubrication devices and grease fittings. - g. Copper, brass, aluminum, stainless steel and bronze surfaces. - h. Valve stems and rotating shafts. - i. Pressure gages and thermometers. - j. Glass. - k. Name plates. - 3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint obtained from manufacturer or computer matched. - 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer - 5. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this. # 3.6 IDENTIFICATION SIGNS - A. Laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws. - B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance shall be placed on factory built equipment. ## 3.7 STARTUP AND TEMPORARY OPERATION A. Start up of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT. ## 3.8 OPERATING AND PERFORMANCE TESTS - A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the Resident Engineer. - B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government. - C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests such systems respectively during first actual seasonal use of respective systems following completion of work. ## 3.9 OPERATION AND MAINTENANCE MANUALS - A. Provide four bound copies. The Operations and maintenance manuals shall be delivered to RE/COTR not less than 30 days prior to completion of a phase or final inspection. - B. All new and temporary equipment and all elements of each assembly shall be included. - C. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included. - D. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual. - E. Lubrication instructions, type and quantity of lubricant shall be included. - F. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included. - G. Set points of all interlock devices shall be listed. - H. Trouble-shooting guide for the control system troubleshooting guide shall be inserted into the Operations and Maintenance Manual. - I. The combustion control system sequence of operation corrected with submittal review comments shall be inserted into the Operations and Maintenance Manual. - J. Emergency procedures. #### 3.10 INSTRUCTIONS TO VA PERSONNEL Instructions shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS. - - - E N D - - - ## **SECTION 22 08 00** # COMMISSIONING OF PLUMBING SYSTEMS #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. The requirements of this Section apply to all sections of Division 22. - B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the Department of Veterans Affairs will manage the commissioning process. #### 1.2 RELATED WORK - A. Section 01 00 00 GENERAL REQUIREMENTS. - B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. - C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. #### 1.3 SUMMARY - A. This Section includes requirements for commissioning plumbing systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements. - B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members. #### 1.4
DEFINITIONS A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions. # 1.5 COMMISSIONED SYSTEMS - A. Commissioning of a system or systems specified in Division 22 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 22, is required in cooperation with the VA and the Commissioning Agent. - B. The Plumbing systems commissioning will include the systems listed in Section 01 19 00 General Commissioning Requirements: ## 1.6 SUBMITTALS - A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details. - B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. ## PART 2 - PRODUCTS (NOT USED) # PART 3 - EXECUTION ## 3.1 CONSTRUCTION INSPECTIONS A. Commissioning of the Building Plumbing Systems will require inspection of individual elements of the Plumbing construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning Plan to schedule inspections as required to support the commissioning process. # 3.2 PRE-FUNCTIONAL CHECKLISTS A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents. ## 3.3 CONTRACTORS TESTS A. Contractor tests as required by other sections of Division 22 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. . All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing. # 3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING: A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Contracting Officer's Representative (COR). The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details. #### 3.5 TRAINING OF VA PERSONNEL A. Training of the VA operation and maintenance personnel is required in cooperation with the COR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 19 00. The instruction shall be scheduled in coordination with the COR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 22 Sections for additional Contractor training requirements. ---- END ---- # SECTION 22 13 00 FACILITY SANITARY AND VENT PIPING #### PART 1 - GENERAL #### 1.1 DESCRIPTION This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section. ### 1.2 RELATED WORK A. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification. ### 1.3 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Manufacturer's Literature and Data: - 1. Piping. - 2. Cleanouts. - 3. All items listed in Part 2 Products. # 1.4 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society of Mechanical Engineers (ASME): (Copyrighted Society) Al3.1-07......Scheme for Identification of Piping Systems - C. American Society for Testing and Materials (ASTM): - A74-06......Standard Specification for Cast Iron Soil Pipe and Fittings - C564-03a.....Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings - D. International Code Council: - IPC-06.....International Plumbing Code - E. Cast Iron Soil Pipe Institute (CISPI): - 310-04......Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications F. American Society of Sanitary Engineers (ASSE): 1018-01......Trap Seal Primer Valves - Potable, Water Supplied G. Plumbing and Drainage Institute (PDI): PDI WH-201.....Water Hammer Arrestor #### PART 2 - PRODUCTS # 2.1 SANITARY WASTE, DRAIN, AND VENT PIPING - A. Cast iron waste, drain, and vent pipe and fittings - 1. Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications: - a. interior waste and vent piping above grade. - 2. Cast iron Pipe shall be hubless (plain end or no-hub or hubless). - 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI Standard 301, ASTM A-888, or ASTM A-74. - 4. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM Standard C-564 or be installed with lead and oakum. ### 2.2 SPECIALTY PIPE FITTINGS - A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material: - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564. ### 2.3 CLEANOUTS A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); and not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. Minimum - clearance of 600 mm (24 inches) shall be provided for clearing a clogged sanitary line. - B. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule. Plain end (hubless) piping in interstitial space or above ceiling may use plain end (hubless) blind plug and clamp. #### PART 3 - EXECUTION #### 3.1 PIPE INSTALLATION - A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications. - B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections. - C. Pipe shall be round and straight. Cutting shall be done with proper tools. - D. All pipe runs shall be laid out to avoid interference with other work. - E. Unless specifically indicated on the drawings, the minimum slope shall be 2% slope. - F. The piping shall be installed free of sags and bends. - G. Seismic restraint shall be installed where required by code. - H. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and eighth bend fittings shall be
used if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited. - I. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings" ### 3.2 JOINT CONSTRUCTION A. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints. #### 3.3 SPECIALTY PIPE FITTINGS A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters. # 3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES: - A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 22 05 11, the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply. - B. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling. - C. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters: - 1. 40 mm or DN40 to 50 mm or DN50 (NPS 1-1/2 inch to NPS 2 inch): 1500 mm (60 inches) with 10 mm (3/8 inch) rod. - 2. 80 mm or DN 80 (NPS 3 inch): 1500 mm (60 inches) with 13 mm (½ inch) rod. - 3. 100 mm or DN100 to 125 mm or DN125 (NPS 4 to NPS 5): 1500 mm (60 inches) with 16 mm (5/8 inch) rod. - 4. 150 mm or DN150 to 200 mm or DN200 (NPS 6 inch to NPS 8 inch): 1500 mm (60 inches) with 19 mm ($\frac{3}{4}$ inch) rod. - 5. 250 mm or DN250 to 300 mm or DN 300 (NPS 10 inch to NPS 12 inch): 1500 mm (60 inch) with 22 mm (7/8 inch) rod. - D. The maximum spacing for plastic pipe shall be 1.22 m (4 feet). - E. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, floor, Supports, Hangers shall have the following characteristics: - 1. Height adjustable clevis type pipe hangers. - 2. Adjustable floor rests and base flanges shall be steel. - 3. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place. - 4. See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports. - F. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support. - G. Piping shall conform to the following: - 1. Waste and Vent Drain to main stacks: | Pipe Size | Minimum Pitch | | |--------------------|------------------------|--| | 2-inch and smaller | 2% or 1/4" per foot | | | 3-inch to 6-inch | 1% or 1/8" per foot | | | 8-inch and larger | 0.5% or 1/16" per foot | | ### 3.5 TESTS A. Sanitary waste and drain systems shall be tested either in its entirety or in sections. - - - E N D - - - THIS PAGE WAS INTENTIONALLY LEFT BLANK # SECTION 22 14 00 FACILITY STORM DRAINAGE #### PART 1 - GENERAL #### 1.1 DESCRIPTION This section describes the requirements for storm drainage systems, including piping and all necessary accessories as designated in this section. ### 1.2 RELATED WORK A. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification. ### 1.3 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Manufacturer's Literature and Data: - 1. Piping. # 1.4 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American National Standards Institute (ANSI). - C. American Society of Mechanical Engineers (ASME): (Copyrighted Society) A13.1-07......Scheme for Identification of Piping Systems B16.3-06.....Malleable Iron Threaded Fittings, Classes 150 and 300. B16.9-07 Factory-Made Wrought Steel Butt welding Fittings - D. American Society for Testing and Materials (ASTM): - A74-06......Standard Specification for Cast Iron Soil Pipe and Fittings - C564-06a.....Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings - E. Cast Iron Soil Pipe Institute (CISPI): - 310-04......Couplings for Use in Connection with Hubless Cast Iron Soil and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications ### PART 2 - PRODUCTS #### 2.1 STORM WATER DRAIN PIPING - A. Cast Iron Storm Pipe and Fittings: - 1. Cast iron storm pipe and fittings shall be used for the following applications: - a. Interior storm piping above grade. - 2. The cast iron storm Pipe shall be hubless (plain end or no-hub. - 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI Standard 301, ASTM A-888, or ASTM A-74. - 4. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. #### 2.2 CLEANOUTS - A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. A minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged storm sewer line. - B. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/no hub cast iron ferrule. # PART 3 - EXECUTION #### 3.1 PIPE INSTALLATION - A. The pipe installation shall comply with the requirements of the International code and these specifications. - B. Pipe shall be round and straight. Cutting shall be done with proper tools. - C. Seismic restraint shall be installed where required by code. - D. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings" # 3.2 JOINT CONSTRUCTION A. Hubless, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints. # 3.3 PIPE HANGERS, SUPPORTS AND ACCESSORIES: - A. All piping shall be supported according to the International plumbing code, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. - B. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling. - C. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters: - 1. NPS 4 to NPS 5 (DN 100 to DN 125): 1500 mm (60 inches) with 16 mm (5/8 inch) rod. - 2. NPS 6 to NPS 8 (DN 150 to DN 200): 1500 mm (60 inches) with 19 mm (3/4 inch) rod. - D. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, floor, Wall and Ceiling Plates shall have the following characteristics: - 1. Height adjustable clevis type pipe hangers. - 2. Hanger Rods shall be low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place. - E. Miscellaneous Materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. - F. Piping shall conform to the following: - 1. Storm Water Drain and Vent Drain to main stacks: | Pipe Size | Minimum Pitch | | |--------------------|------------------------|--| | 2-inch and smaller | 2% or 1/4" per foot | | | 3-inch to 6-inch | 1% or 1/8" per foot | | | 8-inch and larger | 0.5% or 1/16" per foot | | # 3.5 TESTS A. Storm sewer system shall be tested either in its entirety or in sections. - - - E N D - - - THIS PAGE WAS INTENTIONALLY LEFT BLANK # SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section applies to all sections of Division 26. - B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings. - C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited. ## 1.2 MINIMUM REQUIREMENTS - A. The International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation. - B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards. ## 1.3 TEST STANDARDS A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of
a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings. #### B. Definitions: 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction - and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose. - 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner. - 3. Certified: Materials and equipment which: - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner. - b. Are periodically inspected by a NRTL. - c. Bear a label, tag, or other record of certification. - 4. Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations. # 1.4 QUALIFICATIONS (PRODUCTS AND SERVICES) - A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years. - B. Product Qualification: - 1. Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years. - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval. - C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within <u>four</u> hours of receipt of notification that service is needed. Submit name and address of service organizations. ### 1.5 APPLICABLE PUBLICATIONS - A. Applicable publications listed in all Sections of Division 26 are the latest issue, unless otherwise noted. - B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section. #### 1.6 MANUFACTURED PRODUCTS - A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. - B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer. - C. Equipment Assemblies and Components: - 1. Components of an assembled unit need not be products of the same manufacturer. - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit. - 3. Components shall be compatible with each other and with the total assembly for the intended service. - 4. Constituent parts which are similar shall be the product of a single manufacturer. - D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams. - E. When Factory Testing Is Specified: - 1. The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the Contracting Officer's Representative (COR) a minimum of 15 working days prior to the manufacturer's performing the factory tests. - 2. Four copies of certified test reports shall be furnished to the COR two weeks prior to final inspection and not more than 90 days after completion of the tests. - 3. When materials and equipment fail factory tests, and re-testing and re-inspection is required, the Contractor shall be liable for all additional expenses for the Government to witness re-testing. # 1.7 VARIATIONS FROM CONTRACT REQUIREMENTS A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods. # 1.8 MATERIALS AND EQUIPMENT PROTECTION - A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain. - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation. - 2. During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment. - 3. Damaged equipment shall be repaired or replaced, as determined by the COR. - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal. - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious. # 1.9 WORK PERFORMANCE - A. All electrical work shall comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J General Environmental Controls, OSHA Part 1910 subpart K Medical and First Aid, and OSHA Part 1910 subpart S Electrical, in addition to other references required by contract. - B. Job site safety and worker safety is the responsibility of the Contractor. - C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished in this manner for the required work, the following requirements are mandatory: - Electricians must use full protective equipment (i.e., certified and tested insulating material to cover exposed energized electrical components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E. - 2. Before initiating any work, a job specific work plan must be developed by the Contractor with a peer review conducted and documented by the COR and Medical Center staff. The work plan must include procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways. - 3. Work on energized circuits or equipment cannot begin until prior written approval is obtained from the COR. - D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS. - E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS. - F. Coordinate location of equipment and conduit with other trades to minimize interference. ### 1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS - A. Equipment location shall be as close as practical to locations shown on the drawings. - B. Working clearances shall not be less than specified in the NEC. - C. Inaccessible Equipment: - 1. Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government. - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways. - D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices. ### 1.11 EQUIPMENT IDENTIFICATION - A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment. - B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of
phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws. - C. Install adhesive arc flash warning labels on all equipment as required by NFPA 70E. Label shall indicate the arc hazard boundary (inches), working distance (inches), arc flash incident energy at the working distance (calories/cm2), required PPE category and description including the glove rating, voltage rating of the equipment, limited approach distance (inches), restricted approach distance (inches), prohibited approach distance (inches), equipment/bus name, date prepared, and manufacturer name and address. # 1.12 SUBMITTALS - A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted. - C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall - be legible and clearly identify specific materials and equipment being submitted. - D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval. - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____". - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers. - 3. Submit each section separately. - E. The submittals shall include the following: - 1. Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required. - 2. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams. - 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer. - F. Maintenance and Operation Manuals: - Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent. - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment. - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in. - 4. The manuals shall include: - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment. - b. A control sequence describing start-up, operation, and shutdown. - c. Description of the function of each principal item of equipment. - d. Installation instructions. - e. Safety precautions for operation and maintenance. - f. Diagrams and illustrations. - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers. - h. Performance data. - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization. - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications. - G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable. - H. After approval and prior to installation, furnish the COR with one sample of each of the following: - 1. A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer. - 2. Each type of conduit coupling, bushing, and termination fitting. - 3. Conduit hangers, clamps, and supports. - 4. Duct sealing compound. - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker. # 1.13 SINGULAR NUMBER A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings. ### 1.14 ACCEPTANCE CHECKS AND TESTS - A. The Contractor shall furnish the instruments, materials, and labor for tests. - B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government. - C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests. Repair, replacement, and retesting shall be accomplished at no additional cost to the Government. ### 1.15 WARRANTY A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government. #### 1.16 INSTRUCTION - A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section. - B. Furnish the services of competent instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be trained in operating theory as well as practical operation and maintenance procedures. - C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training. PART 2 - PRODUCTS (NOT USED) PART 3 - EXECUTION (NOT USED) ---END--- THIS PAGE WAS INTENTIONALLY LEFT BLANK # SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES #### PART 1 - GENERAL #### 1.1 DESCRIPTION A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section. # 1.2 RELATED WORK - A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction. - B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26. - C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents. - D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables. - E. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Installation of conductors and cables in manholes and ducts. # 1.3 QUALITY ASSURANCE A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. #### 1.4 FACTORY TESTS A. Conductors and cables shall be thoroughly tested at the factory per NEMA to ensure that there are no electrical defects. Factory tests shall be certified. # 1.5 SUBMITTALS - A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. - 1. Shop Drawings: - a. Submit sufficient information to demonstrate compliance with drawings and specifications. - b. Submit the following data for approval: - 1) Electrical ratings and insulation type for each conductor and cable. - 2) Splicing materials and pulling lubricant. - 2. Certifications: Two weeks prior to final inspection, submit the following. - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications. - b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested. ### 1.6 APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only. - B. American Society of Testing Material (ASTM): | D2301-10 | .Standard | Specification | for | Vinyl | Chloride | |----------|-----------|-----------------|-----|--------|----------| | | Plastic I | Pressure-Sensit | ive | Electi | rical | | | Insulatir | ng Tape | | | | | D2304-10Test Method for Thermal Endurance of Rigid |
--| | Electrical Insulating Materials | | D3005-10Low-Temperature Resistant Vinyl Chloride | | Plastic Pressure-Sensitive Electrical | Insulating Tape C. National Electrical Manufacturers Association (NEMA): WC 70-09.....Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy D. National Fire Protection Association (NFPA): 70-11......National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): | 44-10 | $\ldots Thermoset-Insulated$ | Wires | and | Cables | |-------|------------------------------|-------|-----|--------| | | | | | | 83-08......Thermoplastic-Insulated Wires and Cables 467-07..... Grounding and Bonding Equipment 486A-486B-03.....Wire Connectors 486C-04.....Splicing Wire Connectors 486D-05......Sealed Wire Connector Systems 486E-09..... Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07.....Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables 514B-04......Conduit, Tubing, and Cable Fittings ### PART 2 - PRODUCTS ### 2.1 CONDUCTORS AND CABLES - A. Conductors and cables shall be in accordance with NEMA, UL, as specified herein, and as shown on the drawings. - B. All conductors shall be copper. - C. Single Conductor and Cable: - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings. - 2. No. 8 AWG and larger: Stranded. - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment. - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems. #### D. Color Code: - 1. No. 10 AWG and smaller: Solid color insulation or solid color coating. - 2. No. 8 AWG and larger: Color-coded using one of the following methods: - a. Solid color insulation or solid color coating. - b. Stripes, bands, or hash marks of color specified. - c. Color using 19 mm (0.75 inches) wide tape. - 4. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system. - 5. Conductors shall be color-coded as follows: | 208/120 V | Phase | 480/277 V | | | |-----------------|----------------|---------------------|--|--| | Black | A | Brown | | | | Red | В | Orange | | | | Blue | С | Yellow | | | | White | Neutral | Gray * | | | | * or white with | colored (other | than green) tracer. | | | 6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the Contracting Officer's Representative (COR). 7. Color code for isolated power system wiring shall be in accordance with the NEC. ### 2.2 SPLICES - A. Splices shall be in accordance with NEC and UL. - B. Above Ground Splices for No. 10 AWG and Smaller: - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors. - 2. The integral insulator shall have a skirt to completely cover the stripped conductors. - 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed. - C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG: - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors. - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined. - 3. Splice and insulation shall be product of the same manufacturer. - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel. - D. Above Ground Splices for 250 kcmil and Larger: - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors. - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined. - 3. Splice and insulation shall be product of the same manufacturer. - E. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant. # 2.3 CONNECTORS AND TERMINATIONS - A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors. - B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors. C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel. #### 2.4 CONTROL WIRING - A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG. - B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls. ### 2.5 WIRE LUBRICATING COMPOUND - A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive. - B. Shall not be used on conductors for isolated power systems. ### PART 3 - EXECUTION #### 3.1 GENERAL - A. Install conductors in accordance with the NEC, as specified, and as shown on the drawings. - B. Install all conductors in raceway systems. - C. Splice conductors only in outlet boxes, junction boxes, pullboxes, manholes, or handholes. - D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway. - E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight. - F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with non-metallic ties. - G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment. - H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors. - I. Conductor and Cable Pulling: - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable. - 2. Use nonmetallic pull ropes. - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors. - 4. All conductors in a single conduit shall be pulled simultaneously. - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values. - J. No more than three branch circuits shall be installed in any one conduit. - K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands. # 3.2 INSTALLATION IN MANHOLES A. Train the cables around the manhole walls, but do not bend to a radius less than six times the overall cable diameter. # B. Fireproofing: - Install fireproofing on low-voltage conductors where the low-voltage conductors are installed in the same manholes with medium-voltage conductors. - 2. Use fireproofing tape as specified in Section 26 05 13, MEDIUM-VOLTAGE CABLES, and apply the tape in a single layer, half-lapped, or as recommended by the manufacturer. Install the tape with the coated side towards the cable and extend it not less than 25 mm (1 inch) into each duct. - 3. Secure the fireproofing tape in place by a random wrap of glass cloth tape. ### 3.3 SPLICE AND TERMINATION INSTALLATION - A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench. - B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government. # 3.4 CONDUCTOR IDENTIFICATION A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type. ### 3.5 FEEDER CONDUCTOR IDENTIFICATION A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties. #### 3.6 EXISTING CONDUCTORS A. Unless specifically indicated on the plans, existing conductors shall not be reused. ### 3.7 CONTROL WIRING INSTALLATION - A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings. - B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings. #### 3.8 CONTROL WIRING IDENTIFICATION - A. Install a permanent wire marker on each wire at each termination. - B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems. - C. Wire markers shall retain their markings after cleaning. - D. In each manhole and handhole, install embossed brass tags to identify the system served
and function. ### 3.9 ACCEPTANCE CHECKS AND TESTS - A. Perform in accordance with the manufacturer's recommendations. In addition, include the following: - 1. Visual Inspection and Tests: Inspect physical condition. - 2. Electrical tests: - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phase-to-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested. - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable. - c. Perform phase rotation test on all three-phase circuits. ---END--- # SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS ### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section. - B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes. - C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning. #### 1.2 RELATED WORK - A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26. - B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors. - C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes. - D. Section 26 22 00, LOW-VOLTAGE TRANSFORMERS: Low-voltage transformers. - E. Section 26 24 16, PANELBOARDS: Low-voltage panelboards. # 1.3 QUALITY ASSURANCE A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. #### 1.4 SUBMITTALS - A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. - 1. Shop Drawings: - a. Submit sufficient information to demonstrate compliance with drawings and specifications. - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors. # 2. Test Reports: - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the Contracting Officer's Representative (COR). - 3. Certifications: a. Certification by the Contractor that the grounding equipment has been properly installed and tested. ### 1.5 APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. - B. American Society for Testing and Materials (ASTM): - B1-07.....Standard Specification for Hard-Drawn Copper Wire - B3-07.....Standard Specification for Soft or Annealed Copper Wire - B8-11.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft - C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): - 81-83..... IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System Part 1: Normal Measurements - D. National Fire Protection Association (NFPA): - 70-11......National Electrical Code (NEC) - 70E-12......National Electrical Safety Code - 99-12.....Health Care Facilities - E. Underwriters Laboratories, Inc. (UL): - 44-10Thermoset-Insulated Wires and Cables - 467-07Grounding and Bonding Equipment #### PART 2 - PRODUCTS ### 2.1 GROUNDING AND BONDING CONDUCTORS - A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC. - B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment. - C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater. - D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems. #### 2.2 GROUND RODS - A. Copper clad steel, 19 mm (0.75 inch) diameter by 3 M (10 feet) long. - B. Quantity of rods shall be as shown on the drawings, and as required to obtain the specified ground resistance. ### 2.3 CONCRETE ENCASED ELECTRODE A. Concrete encased electrode shall be No. 4 AWG bare copper wire, installed per NEC. ### 2.4 GROUND CONNECTIONS - A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors. - B. Above Grade: - 1. Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer. - 2. Connection to Building Steel: Exothermic-welded type connectors. - 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer. - 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer. # 2.5 EQUIPMENT RACK AND CABINET GROUND BARS A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets. ### 2.6 GROUND TERMINAL BLOCKS A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer. #### 2.7 GROUNDING BUS BAR A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets. ### PART 3 - EXECUTION ### 3.1 GENERAL - A. Install grounding equipment in accordance with the NEC, as shown on the drawings, and as specified herein. - B. System Grounding: - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer. - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral. - C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded. # 3.2 INACCESSIBLE GROUNDING CONNECTIONS A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld. # 3.3 MEDIUM-VOLTAGE EQUIPMENT AND CIRCUITS - A. Switchgear: Provide a bare grounding electrode conductor from the switchgear ground bus to the grounding electrode system. - B. Duct Banks and Manholes: Provide an insulated equipment grounding conductor in each duct containing medium-voltage conductors, sized per NEC except that minimum size shall be No. 2 AWG. Bond the equipment grounding conductors to the switchgear ground bus, to all manhole grounding provisions and hardware, to the cable shield grounding provisions of medium-voltage cable splices and terminations, and to equipment enclosures. - C. Pad-Mounted Transformers: - 1. Provide a driven ground rod and bond with a grounding electrode conductor to the transformer grounding pad. - 2. Ground the secondary neutral. - D. Lightning Arresters: Connect lightning arresters to the equipment ground bus or ground rods as applicable. ### 3.4 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS - A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment. - B. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s): - Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes. Provide jumpers across insulating joints in the metallic piping. - 2. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system. - C. Switchgear, Switchboards, Unit Substations, Panelboards, Motor Control Centers, Engine-Generators, Automatic Transfer Switches, and other electrical equipment: - 1. Connect the equipment grounding conductors to the ground bus. - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus. # D. Transformers: - 1. Exterior: Exterior transformers supplying interior service equipment shall have the neutral grounded at the transformer secondary. Provide a grounding electrode at the transformer. - 2. Separately derived systems (transformers downstream from service
equipment): Ground the secondary neutral at the transformer. Provide a grounding electrode conductor from the transformer to the nearest component of the grounding electrode system. # 3.5 RACEWAY - A. Conduit Systems: - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor. - 2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor. - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit. - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus. - B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits. - C. Boxes, Cabinets, Enclosures, and Panelboards: - 1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown). - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination. ## D. Wireway Systems: - Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions. - 2. Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet). - 3. Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions. - 4. Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet). - E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor. - F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a - green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box. - G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor. - H. Raised Floors: Provide bonding for all raised floor components as shown on the drawings. - I. Panelboard Bonding in Patient Care Areas: The equipment grounding terminal buses of the normal and essential branch circuit panel boards serving the same individual patient vicinity shall be bonded together with an insulated continuous copper conductor not less than No. 10 AWG, installed in rigid metal conduit. # 3.6 CORROSION INHIBITORS A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used. #### 3.7 CONDUCTIVE PIPING - A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus. - B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus. # 3.8 MAIN ELECTRICAL ROOM GROUNDING A. Provide ground bus bar and mounting hardware at each main electrical room where incoming feeders are terminated, as shown on the drawings. Connect to pigtail extensions of the building grounding ring, as shown on the drawings. ### 3.9 EXTERIOR LIGHT POLES A. Provide 6.1 M (20 feet) of No. 4 AWG bare copper coiled at bottom of pole base excavation prior to pour, plus additional unspliced length in and above foundation as required to reach pole ground stud. ## 3.10 GROUND RESISTANCE - A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met. - B. Grounding system resistance shall comply with the electric utility company ground resistance requirements. ### 3.11 GROUND ROD INSTALLATION - A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 610 mm (24 inches) below final grade. - B. For indoor installations, leave 100 mm (4 inches) of each rod exposed. - C. Where buried or permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with mechanical pressuretype ground connectors. - D. Where rock or impenetrable soil prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified ground resistance. ### 3.12 ACCEPTANCE CHECKS AND TESTS - A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall. - B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided. - C. Below-grade connections shall be visually inspected by the COR prior to backfilling. The Contractor shall notify the COR 24 hours before the connections are ready for inspection. ---END--- # SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS ### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise. - B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified. ### 1.2 RELATED WORK - A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction. - B. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building. - C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26. - D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents. - E. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground conduits. - F. Section 31 20 00, EARTH MOVING: Bedding of conduits. # 1.3 QUALITY ASSURANCE Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. ### 1.4 SUBMITTALS In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following: - A. Manufacturer's Literature and Data: Showing each cable type and rating. The specific item proposed and its area of application shall be identified on the catalog cuts. - B. Shop Drawings: - 1. Size and location of main feeders. - 2. Size and location of panels and pull-boxes. - 3. Layout of required conduit penetrations through structural elements. - C. Certifications: - 1. Two weeks prior to the final inspection, submit four copies of the following certifications to the Contracting Officer's Representative (COR): - a. Certification by the manufacturer that the material conforms to the requirements of the drawings and specifications. - b. Certification by the contractor that the material has been properly installed. #### 1.5 APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. - B. American National Standards Institute (ANSI): | C80.1-05 | Electrical Rigid Steel Conduit | |----------|---------------------------------------| | C80.3-05 | Steel Electrical Metal Tubing | | C80.6-05 | Electrical Intermediate Metal Conduit | - C. National Fire Protection Association (NFPA): - 70-08......National Electrical Code (NEC) - D. | Underwriters Laboratories, Inc. (UL): | | | |---|--|--| | 1-05Flexible Metal Conduit | | | | 5-04Surface Metal Raceway and Fittings | | | | 6-07 Electrical Rigid Metal Conduit - Steel | | | | 50-95Enclosures for Electrical Equipment | | | | 360-093Liquid-Tight Flexible Steel Conduit | | | | 467-07Grounding and Bonding Equipment | | | | 514A-04Metallic Outlet Boxes | | | | 514B-04Conduit, Tubing, and Cable Fittings | | | | 514C-96Nonmetallic Outlet Boxes, Flush-Device Boxes and | | | | Covers | | | | 651-05Schedule 40 and 80 Rigid PVC Conduit and | | | | Fittings | | | | 651A-00Type EB and A Rigid PVC Conduit and HDPE Conduit | | | - 651A-00......Type
EB and A Rigid PVC Conduit and HDPE Conduit 797-07..... Electrical Metallic Tubing - 1242-06......Electrical Intermediate Metal Conduit Steel - E. National Electrical Manufacturers Association (NEMA): - TC-2-03......Electrical Polyvinyl Chloride (PVC) Tubing and Conduit - TC-3-04......PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable ### PART 2 - PRODUCTS ### 2.1 MATERIAL A. Conduit Size: In accordance with the NEC, but not less than 0.5 in [13 mm] unless otherwise shown. Where permitted by the NEC, 0.5 in [13 mm] flexible conduit may be used for tap connections to recessed lighting fixtures. ## B. Conduit: - 1. Rigid steel: Shall conform to UL 6 and ANSI C80.1. - 2. Rigid intermediate steel conduit (IMC): Shall conform to UL 1242 and ANSI C80.6. - 3. Electrical metallic tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 4 in [105 mm] and shall be permitted only with cable rated 600 V or less. - 4. Flexible galvanized steel conduit: Shall conform to UL 1. - 5. Liquid-tight flexible metal conduit: Shall conform to UL 360. - 6. Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE). - 7. Surface metal raceway: Shall conform to UL 5. # C. Conduit Fittings: - 1. Rigid steel and IMC conduit fittings: - a. Fittings shall meet the requirements of UL 514B and NEMA FB1. - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable. - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure. - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted. - e. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case-hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited. - f. Sealing fittings: Threaded cast iron type. Use continuous draintype sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room. - 2. Electrical metallic tubing fittings: - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1. - b. Only steel or malleable iron materials are acceptable. - c. Compression couplings and connectors: Concrete-tight and raintight, with connectors having insulated throats. - d. Indent-type connectors or couplings are prohibited. - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited. - 3. Flexible steel conduit fittings: - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable. - b. Clamp-type, with insulated throat. - 4. Liquid-tight flexible metal conduit fittings: - a. Fittings shall meet the requirements of UL 514B and NEMA FB1. - b. Only steel or malleable iron materials are acceptable. - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats. - 5. Direct burial plastic conduit fittings: - Fittings shall meet the requirements of UL 514C and NEMA TC3. - 6. Surface metal raceway fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system. - 7. Expansion and deflection couplings: - a. Conform to UL 467 and UL 514B. - b. Accommodate a 0.75 in [19 mm] deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections. - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors. d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps. # D. Conduit Supports: - 1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection. - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod. - 3. Multiple conduit (trapeze) hangers: Not less than 1.5×1.5 in [38 mm \times 38 mm], 12-gauge steel, cold-formed, lipped channels; with not less than 0.375 in [9 mm] diameter steel hanger rods. - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion. - E. Outlet, Junction, and Pull Boxes: - 1. UL-50 and UL-514A. - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes. - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown. - 4. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers. - F. Wireways: Equip with hinged covers, except where removable covers are shown. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system. # PART 3 - EXECUTION ## 3.1 PENETRATIONS - A. Cutting or Holes: - 1. Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the COR prior to drilling through structural elements. - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except where permitted by the COR as required by limited working space. - B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the - spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. - C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight, as specified in Section 07 92 00, JOINT SEALANTS. ### 3.2 INSTALLATION, GENERAL - A. In accordance with UL, NEC, as shown, and as specified herein. - B. Essential (Emergency) raceway systems shall be entirely independent of other raceway systems, except where shown on drawings. - C. Install conduit as follows: - 1. In complete mechanically and electrically continuous runs before pulling in cables or wires. - 2. Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings. - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material. - 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways. - 5. Cut square, ream, remove burrs, and draw up tight. - 6. Independently support conduit at 8 ft [2.4 M] on centers. Do not use other supports, i.e., suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts. - 7. Support within 12 in [300 mm] of changes of direction, and within 12 in [300 mm] of each enclosure to which connected. - 8. Close ends of empty conduit with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris. - 9. Conduit installations under fume and vent hoods are prohibited. - 10. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers. - 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL. - 12. Conduit bodies shall only be used for changes in direction, and shall not contain splices. #### D. Conduit Bends: 1. Make bends with standard conduit bending machines. - 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits. - 3. Bending of conduits with a pipe tee or vise is prohibited. ## E. Layout and Homeruns: - Install conduit with wiring, including homeruns, as shown on drawings. - 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COR. ### 3.3 CONCEALED WORK INSTALLATION #### A. In Concrete: - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers. - 2. Align and run conduit in direct lines. - 3. Install conduit through concrete beams only: - a. Where shown on the structural drawings. - b. As approved by the COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration. - 4. Installation of conduit in concrete that is less than 3 in [75 mm] thick is prohibited. - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited. - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings. - c. Install conduits approximately in the center of the slab so
that there will be a minimum of 0.75 in [19 mm] of concrete around the conduits. - 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited. - B. Above Furred or Suspended Ceilings and in Walls: - 1. Conduit for conductors above 600 V: Rigid steel. Mixing different types of conduits indiscriminately in the same system is prohibited. - 2. Conduit for conductors 600 V and below: Rigid steel, IMC, or EMT. Mixing different types of conduits indiscriminately in the same system is prohibited. - Align and run conduit parallel or perpendicular to the building lines. - 4. Connect recessed lighting fixtures to conduit runs with maximum 6 ft $[1.8 \ M]$ of flexible metal conduit extending from a junction box to the fixture. - 5. Tightening setscrews with pliers is prohibited. ### 3.4 EXPOSED WORK INSTALLATION - A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms. - B. Conduit for Conductors above 600 V: Rigid steel. Mixing different types of conduits indiscriminately in the system is prohibited. - C. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits indiscriminately in the system is prohibited. - D. Align and run conduit parallel or perpendicular to the building lines. - E. Install horizontal runs close to the ceiling or beams and secure with conduit straps. - F. Support horizontal or vertical runs at not over 8 ft [2.4 M] intervals. - G. Surface metal raceways: Use only where shown. - H. Painting: - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING. - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 2 in [50 mm] high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 20 ft [6 M] intervals in between. # 3.5 DIRECT BURIAL INSTALLATION Refer to Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION. # 3.6 HAZARDOUS LOCATIONS - A. Use rigid steel conduit only, notwithstanding requirements otherwise specified in this or other sections of these specifications. - B. Install UL approved sealing fittings that prevent passage of explosive vapors in hazardous areas equipped with explosion-proof lighting fixtures, switches, and receptacles, as required by the NEC. #### 3.7 WET OR DAMP LOCATIONS - A. Unless otherwise shown, use conduits of rigid steel or IMC. - B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces. C. Unless otherwise shown, use rigid steel or IMC conduit within 5 ft [1.5 M] of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers. Conduit shall be half-lapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating. ### 3.8 MOTORS AND VIBRATING EQUIPMENT - A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission. - B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water. Provide a green equipment grounding conductor with flexible metal conduit. #### 3.9 EXPANSION JOINTS - A. Conduits 3 in [75 mm] and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations. - B. Provide conduits smaller than 3 in [75 mm] with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 5 in [125 mm] vertical drop midway between the ends. Flexible conduit shall have a bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for conduits 15 in [375 mm] and larger are acceptable. - C. Install expansion and deflection couplings where shown. # 3.10 CONDUIT SUPPORTS, INSTALLATION - A. Safe working load shall not exceed one-quarter of proof test load of fastening devices. - B. Use pipe straps or individual conduit hangers for supporting individual conduits. - C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 200 lbs [90 kg]. Attach each conduit with U-bolts or other approved fasteners. - D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items. - E. Fasteners and Supports in Solid Masonry and Concrete: - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete. - 2. Existing Construction: - a. Steel expansion anchors not less than 0.25 in [6 mm] bolt size and not less than 1.125 in [28 mm] embedment. - b. Power set fasteners not less than 0.25 in [6 mm] diameter with depth of penetration not less than 3 in [75 mm]. - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings. - E. Hollow Masonry: Toggle bolts. - F. Bolts supported only by plaster or gypsum wallboard are not acceptable. - G. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application. - H. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited. - I. Chain, wire, or perforated strap shall not be used to support or fasten - J. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls. - K. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars. #### 3.11 BOX INSTALLATION - A. Boxes for Concealed Conduits: - 1. Flush-mounted. - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish. - B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations. - C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes. - D. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 24 in [600 mm] center-to-center lateral spacing shall be maintained between boxes. - E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 4 in [100 mm] square x 2.125 in [55 mm] deep, with device covers for the wall material and thickness involved. - F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1." - G. On all branch circuit junction box covers, identify the circuits with black marker. - - - E N D - - - THIS PAGE WAS INTENTIONALLY LEFT BLANK # SECTION 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section specifies the furnishing, installation, and connection of underground ducts and raceways, and precast manholes and pullboxes to form a complete underground electrical raceway system. - B. The terms "duct" and "conduit" are used interchangeably in this section. ### 1.2 RELATED WORK - A. Section 07 92 00, JOINT SEALANTS: Sealing of conduit penetrations. - B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26. - C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents. - D. Section 31 20 00, EARTH MOVING: Trenching, backfill, and compaction. ## 1.3 QUALITY ASSURANCE - A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. - B. Coordinate layout and installation of ducts, manholes, and pullboxes with final arrangement of other utilities, site grading, and surface features. ## 1.4 SUBMITTALS - A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. - 1. Shop Drawings: - a. Submit sufficient information to demonstrate compliance with drawings and specifications. - b. Submit information on manholes, pullboxes, ducts, and hardware. Submit manhole plan and elevation drawings, showing openings, pulling irons, cable supports, cover, ladder, sump, and other accessories. - c. Proposed deviations from the drawings shall be clearly marked on the submittals. If it is necessary to locate manholes, pullboxes, or duct banks at locations other than shown on the drawings, show the proposed locations accurately on scaled site drawings, and - submit to the Contracting Officer's Representative (COR) for approval prior to construction. - 2. Certifications: Two weeks prior to the final inspection, submit the following. - a. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications. - b. Certification by the Contractor that the materials have been properly installed, connected, and tested. ## 1.5
APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. - B. American Concrete Institute (ACI): Building Code Requirements for Structural Concrete 318-11/318M-11.........Building Code Requirements for Structural Concrete & Commentary SP-66-04.....ACI Detailing Manual C. American National Standards Institute (ANSI): 77-10......Underground Enclosure Integrity D. American Society for Testing and Materials (ASTM): C478-12.....Standard Specification for Precast Reinforced Concrete Manhole Sections C858-10e1......Underground Precast Concrete Utility Structures C990-09.....Joints for Concrete Pipe, Manholes and Precast Box Sections Using Preformed Flexible Joint Sealants. E. National Electrical Manufacturers Association (NEMA): TC 2-03..... Electrical Polyvinyl Chloride (PVC) Conduit TC 3-04.....Polyvinyl Chloride (PVC) Fittings for Use With Rigid PVC Conduit And Tubing TC 6 & 8-03.....Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installations - For Underground Installations TC 9-04......Fittings For Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installation - F. National Fire Protection Association (NFPA): - 70-11.....National Electrical Code (NEC) 70E-12.....National Electrical Safety Code G. Underwriters Laboratories, Inc. (UL): | 6-07Electrical Rigid Metal Conduit-Steel | |---| | 467-07Grounding and Bonding Equipment | | 651-11Schedule 40, 80, Type EB and A Rigid PVC | | Conduit and Fittings | | 651A-11Schedule 40 and 80 High Density Polyethylene | | (HDPE) Conduit | | 651B-07Continuous Length HDPE Conduit | ## PART 2 - PRODUCTS ### 2.1 PRE-CAST CONCRETE MANHOLES AND HARDWARE - A. Structure: Factory-fabricated, reinforced-concrete, monolithically-poured walls and bottom. Frame and cover shall form top of manhole. - B. Cable Supports: - 1. Cable stanchions shall be hot-rolled, heavy duty, hot-dipped galvanized "T" section steel, 56 mm (2.25 inches) x 6 mm (0.25 inch) in size, and punched with 14 holes on 38 mm (1.5 inches) centers for attaching cable arms. - 2. Cable arms shall be 5 mm (0.1875 inch) gauge, hot-rolled, hot-dipped galvanized sheet steel, pressed to channel shape. Arms shall be approximately 63 mm (2.5 inches) wide x 350 mm (14 inches) long. - 3. Insulators for cable supports shall be porcelain, and shall be saddle type or type that completely encircles the cable. - 4. Equip each cable stanchion with one spare cable arm, with three spare insulators for future use. - C. Ladder: Aluminum with 400 mm (16 inches) rung spacing. Provide securely-mounted ladder for every manhole over 1.2 M (4 feet) deep. - D. Ground Rod Sleeve: Provide a 75 mm (3 inches) PVC sleeve in manhole floors so that a driven ground rod may be installed. ### 2.2 PULLBOXES A. General: All pullboxes shall be 13-inch by 24-inch with a 36-inch depth. Provide pullboxes with weatherproof, non-skid covers with recessed hook eyes, secured with corrosion- and tamper-resistant hardware. Cover material shall be identical to pullbox material. Covers shall be blank with no labels. Pullboxes located within vehicle pavements shall comply with the requirements of ANSI 77 AASHTO H20 loading. All other pullboxes shall comply with the requirements ANSI 77 Tier 8 loading. - B. Polymer Concrete Pullboxes: Shall be molded of sand, aggregate, and polymer resin, and reinforced with steel, fiberglass, or both. Pullbox shall have open bottom. - C. Fiberglass Pullboxes: Shall be sheet-molded, fiberglass-reinforced, polyester resin enclosure joined to polymer concrete top ring or frame. - D. Concrete Pullboxes: Shall be monolithically-poured reinforced concrete. #### 2.3 DUCTS - A. Number and sizes shall be as shown on the drawings. - B. Ducts (concrete-encased): - 1. Plastic Duct: - a. UL 651 and 651A Schedule 40 PVC conduit. - b. Duct shall be suitable for use with 90 $^{\circ}$ C (194 $^{\circ}$ F) rated conductors. - 2. Conduit Spacers: Prefabricated plastic. - C. Ducts (direct-burial): - 1. Plastic duct: - a. Schedule 80 PVC. - b. Duct shall be suitable for use with 75° C (167° F) rated conductors. - 2. Rigid metal conduit: UL6 and NEMA RN1 galvanized rigid metal, halflap wrapped with 10 mil PVC tape. ## 2.4 GROUNDING A. Ground Rods and Ground Wire: Per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS. ## 2.5 WARNING TAPE A. 4-mil polyethylene 75 mm (3 inches) wide detectable tape, red with black letters, imprinted with "CAUTION - BURIED ELECTRIC CABLE BELOW" or similar. ### 2.6 PULL ROPE FOR SPARE DUCTS A. Plastic with 890 N (200 lb) minimum tensile strength. ## PART 3 - EXECUTION # 3.1 MANHOLE AND PULLBOX INSTALLATION - A. Assembly and installation shall be per the requirements of the manufacturer. - 1. Install manholes and pullboxes level and plumb. - 2. Units shall be installed on a 300 mm (12 inches) thick level bed of 90% compacted granular fill, well-graded from the 25 mm (1 inches) - sieve to the No. 4 sieve. Granular fill shall be compacted with a minimum of four passes with a plate compactor. - B. Access: Ensure the top of frames and covers are flush with finished grade. ## C. Grounding in Manholes: - 1. Ground Rods in Manholes: Drive a ground rod into the earth, through the floor sleeve, after the manhole is set in place. Fill the sleeve with sealant to make a watertight seal. Rods shall protrude approximately 100 mm (4 inches) above the manhole floor. - 2. Install a No. 3/0 AWG bare copper ring grounding conductor around the inside perimeter of the manhole and anchor to the walls with metallic cable clips. - 3. Connect the ring grounding conductor to the ground rod by an exothermic welding process. - 4. Bond the ring grounding conductor to the duct bank equipment grounding conductors, the exposed non-current carrying metal parts of racks, sump covers, and like items in the manholes with a minimum No. 6 AWG bare copper jumper using an exothermic welding process. - D. Manhole Lighting: Provide NEMA 3R lighting switch mounted no more than 600 mm (2 feet) from top of ladder and a 61 watt LED wet location light fixture in manhole as specified in drawings. Provide dedicated 25.4 mm (1 inch) direct-buried PVC conduit and conductors to nearest electrical panelboard as shown in drawings. - E. Sump Pump: Provide 120V cord and plug connected sump pump complete with float switch, thermal overload protection, and GFCI receptacle mounted in NEMA 3R boxes in manhole. Run feed in same conduit as lighting circuit 1" PVC direct-buried conduit and conductors to nearest electrical panelboard as shown in drawings. #### 3.2 TRENCHING - A. Refer to Section 31 20 00, EARTH MOVING for trenching, backfilling, and compaction. - B. Before performing trenching work at existing facilities, a Ground Penetrating Radar Survey shall be carefully performed by a certified technician to reveal all existing underground ducts, conduits, cables, and other utility systems. - C. Work with extreme care near existing ducts, conduits, and other utilities to avoid damaging them. - D. Cut the trenches neatly and uniformly. - E. For Concrete-Encased Ducts: - 1. After excavation of the trench, stakes shall be driven in the bottom of the trench at $1.2\ M$ (4 foot) intervals to establish the grade and route of the duct bank. - 2. Pitch the trenches uniformly toward manholes or both ways from high points between manholes for the required duct line drainage. Avoid pitching the ducts toward buildings wherever possible. - 3. The walls of the trench may be used to form the side walls of the duct bank, provided that the soil is self-supporting and that the concrete envelope can be poured without soil inclusions. Forms are required where the soil is not self-supporting. - 4. After the concrete-encased duct has sufficiently cured, the trench shall be backfilled to grade with earth, and appropriate warning tape installed. - F. Individual conduits to be installed under existing paved areas and roads that cannot be disturbed shall be jacked into place using rigid metal conduit, or bored using plastic utilities duct or PVC conduit, as approved by the COR. ### 3.3 DUCT INSTALLATION - A. General Requirements: - 1. Ducts shall be in accordance with the NEC, as shown on the drawings, and as specified. - 2. Join and terminate ducts with fittings recommended by the manufacturer. - 3. Slope ducts to drain towards manholes and pullboxes, and away from building and equipment entrances. Pitch not less than 100 mm (4 inch) in 30 M (100 feet). - 4. Underground conduit stub-ups and sweeps to equipment inside of buildings shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) outside the building foundation. Tops of conduits below building slab shall be minimum 610 mm (24 inches) below bottom of slab. - 5. Stub-ups and sweeps to equipment mounted on outdoor concrete slabs shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) away from the edge of slab. - 6. Install insulated grounding bushings on the conduit terminations. - 7. Radius for sweeps shall be sufficient to accomplish pulls without damage. Minimum radius shall be six times conduit diameter. - 8. All multiple conduit runs shall have conduit spacers. Spacers shall securely support and maintain uniform spacing of the duct assembly a minimum of 75 mm (3 inches) above the bottom of the trench during the concrete pour. Spacer spacing shall not exceed 1.5 M (5 feet). Secure spacers to ducts and earth to prevent floating during concrete pour. Provide nonferrous tie wires to prevent displacement of the ducts during concrete pour. Tie wires shall not act as substitute for spacers. - 9. Duct lines shall be installed no less than 300 mm (12 inches) from other
utility systems, such as water, sewer, chilled water. - 10. Clearances between individual ducts: - a. For similar services, not less than 75 mm (3 inches). - b. For power and signal services, not less than 150 mm (6 inches). - 11. Duct lines shall terminate at window openings in manhole walls as shown on the drawings. All ducts shall be fitted with end bells. - 12. Couple the ducts with proper couplings. Stagger couplings in rows and layers to ensure maximum strength and rigidity of the duct bank. - 13. Keep ducts clean of earth, sand, or gravel, and seal with tapered plugs upon completion of each portion of the work. - 14. Spare Ducts: Where spare ducts are shown, they shall have a nylon pull rope installed. They shall be capped at each end and labeled as to location of the other end. - 15. Duct Identification: Place continuous strip of warning tape approximately 300 mm (12 inches) above ducts before backfilling trenches. Warning tape shall be preprinted with proper identification. - 16. Duct Sealing: Seal ducts, including spare ducts, at building entrances and at outdoor terminations for equipment, with a suitable non-hardening compound to prevent the entrance of foreign objects and material, moisture, and gases. - 17. Use plastic ties to secure cables to insulators on cable arms. Use minimum two ties per cable per insulator. # B. Concrete-Encased Ducts: Install concrete-encased ducts for medium-voltage systems, lowvoltage systems, and signal systems, unless otherwise shown on the drawings. - 2. Duct banks shall be single or multiple duct assemblies encased in concrete. Ducts shall be uniform in size and material throughout the installation. - 3. Tops of concrete-encased ducts shall be: - a. Not less than 600 mm (24 inches) and not less than shown on the drawings, below finished grade. - b. Not less than 750 mm (30 inches) and not less than shown on the drawings, below roads and other paved surfaces. - c. Additional burial depth shall be required in order to accomplish NEC-required minimum bend radius of ducts. - d. Conduits crossing under grade slab construction joints shall be installed a minimum of 1.2 M (4 feet) below slab. - 4. Extend the concrete envelope encasing the ducts not less than 75 mm (3 inches) beyond the outside walls of the outer ducts. - 5. Within 3 M (10 feet) of building and manhole wall penetrations, install reinforcing steel bars at the top and bottom of each concrete envelope to provide protection against vertical shearing. - Install reinforcing steel bars at the top and bottom of each concrete envelope of all ducts underneath roadways and parking areas. - 7. Where new ducts and concrete envelopes are to be joined to existing manholes, pullboxes, ducts, and concrete envelopes, make the joints with the proper fittings and fabricate the concrete envelopes to ensure smooth durable transitions. - 8. Duct joints in concrete may be placed side by side horizontally, but shall be staggered at least 150 mm (6 inches) vertically. - 9. Pour each run of concrete envelope between manholes or other terminations in one continuous pour. If more than one pour is necessary, terminate each pour in a vertical plane and install 19 mm (0.75 inch) reinforcing rod dowels extending 450 mm (18 inches) into concrete on both sides of joint near corners of envelope. - 10. Pour concrete so that open spaces are uniformly filled. Do not agitate with power equipment unless approved by COR. # C. Direct-Burial Ducts: - Install direct-burial ducts only where shown on the drawings. Provide direct-burial ducts only for low-voltage power and lighting branch circuits. - 2. Tops of ducts shall be: - a. Not less than 600 mm (24 inches) and not less than shown on the drawings, below finished grade. - b. Not less than 750 mm (30 inches) and not less than shown on the drawings, below roads and other paved surfaces. - c. Additional burial depth shall be required in order to accomplish NEC-required minimum bend radius of ducts. - 3. Do not kink the ducts. Compaction shall not deform the ducts. - D. Connections to Manholes: Ducts connecting to manholes shall be flared to have an enlarged cross-section to provide additional shear strength. Dimensions of the flared cross-section shall be larger than the corresponding manhole opening dimensions by no less than 300 mm (12 inches) in each direction. Perimeter of the duct bank opening in the manhole shall be flared toward the inside or keyed to provide a positive interlock between the duct and the wall of the manhole. Use vibrators when this portion of the encasement is poured to ensure a seal between the envelope and the wall of the structure. - E. Connections to Existing Manholes: For duct connections to existing manholes, break the structure wall out to the dimensions required and preserve the steel in the structure wall. Cut steel and extend into the duct bank envelope. Chip the perimeter surface of the duct bank opening to form a key or flared surface, providing a positive connection with the duct bank envelope. - F. Connections to Existing Ducts: Where connections to existing ducts are indicated, excavate around the ducts as necessary. Cut off the ducts and remove loose concrete from inside before installing new ducts. Provide a reinforced-concrete collar, poured monolithically with the new ducts, to take the shear at the joint of the duct banks. - G. Partially-Completed Ducts: During construction, wherever a construction joint is necessary in a duct bank, prevent debris such as mud and dirt from entering ducts by providing suitable plugs. Fit concrete envelope of a partially completed ducts with reinforcing steel extending a minimum of 600 mm (2 feet) back into the envelope and a minimum of 600 mm (2 feet) beyond the end of the envelope. Provide one No. 4 bar in each corner, 75 mm (3 inches) from the edge of the envelope. Secure corner bars with two No. 3 ties, spaced approximately 300 mm (12 inches) apart. Restrain reinforcing assembly from moving during pouring of concrete. ### 3.4 ACCEPTANCE CHECKS AND TESTS - A. Duct Testing and Cleaning: - Upon completion of the duct installation, a standard flexible mandrel shall be pulled through each duct to loosen particles of earth, sand, or foreign material left in the duct, and to test for out-of-round conditions. - 2. The mandrel shall be not less than 300 mm (12 inches) long, and shall have a diameter not less than 13 mm (0.5 inch) less than the inside diameter of the duct. A brush with stiff bristles shall then be pulled through each duct to remove the loosened particles. The diameter of the brush shall be the same as, or slightly larger than, the diameter of the duct. - 3. If testing reveals obstructions or out-of-round conditions, the Contractor shall replace affected section(s) of duct and retest to the satisfaction of the COR at no cost to the Government. - 4. Mandrel pulls shall be witnessed by the COR. ---END--- ### **SECTION 26 08 00** ### COMMISSIONING OF ELECTRICAL SYSTEMS #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. The requirements of this Section apply to all sections of Division 26. - B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process. #### 1.2 RELATED WORK - A. Section 01 00 00 GENERAL REQUIREMENTS. - B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. - C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. ### 1.3 SUMMARY - A. This Section includes requirements for commissioning the Facility electrical systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements. - B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members. #### 1.4 DEFINITIONS A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions. # 1.5 COMMISSIONED SYSTEMS - A. Commissioning of a system or systems specified in Division 26 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 26, is required in cooperation with the VA and the Commissioning Agent. - B. The Facility electrical systems commissioning will include the systems listed in Section 01 19 00 General Commissioning Requirements: ### 1.6 SUBMITTALS - A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details. - B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. ### PART 2 - PRODUCTS (NOT USED) ### PART 3 - EXECUTION #### 3.1 CONSTRUCTION INSPECTIONS A. Commissioning of Electrical systems will require inspection of individual elements of the electrical systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 19 00 and the Commissioning plan to schedule electrical systems inspections as required to support the Commissioning Process. ## 3.2 PRE-FUNCTIONAL CHECKLISTS A. The Contractor shall
complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents. ### 3.3 CONTRACTORS TESTS A. Contractor tests as required by other sections of Division 26 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing. ### 3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details. #### 3.5 TRAINING OF VA PERSONNEL A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 19 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 26 Sections for additional Contractor training requirements. ----- END ----- THIS PAGE WAS INTENTIONALLY LEFT BLANK # SECTION 26 22 00 LOW-VOLTAGE TRANSFORMERS ## PART 1 - GENERAL #### 1.1 DESCRIPTION A. This section specifies the furnishing, installation, connection, and testing of low-voltage dry-type general-purpose transformers, indicated as transformers in this section. ### 1.2 RELATED WORK - A. Section 03 30 53, CAST-IN-PLACE CONCRETE: Requirements for concrete equipment pads. - B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26. - C. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors. - D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents. - E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit. # 1.3 QUALITY ASSURANCE Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. # 1.4 SUBMITTALS - A. Submit six copies of the following in accordance with Section 26 05 11, REOUIREMENTS FOR ELECTRICAL INSTALLATIONS. - 1. Shop Drawings: - a. Submit sufficient information to demonstrate compliance with drawings and specifications. - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, temperature rise, wiring and connection diagrams, plan, front, side, and rear elevations, accessories, and device nameplate data. #### 2. Manuals: - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets and wiring diagrams. - Schematic signal and control diagrams, with all terminals identified, matching terminal identification in the transformers. - 2) Include information for testing, repair, troubleshooting, assembly, disassembly, and factory recommended/required periodic maintenance procedures and frequency. - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection. - 3. Certifications: Two weeks prior to final inspection, submit the following. - a. Certification by the manufacturer that the transformers conform to the requirements of the drawings and specifications. - b. Certification by the Contractor that the transformers have been properly installed, adjusted, and tested. # 1.5 APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. - B. International Code Council (ICC): IBC-12.....International Building Code C. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) D. National Electrical Manufacturers Association (NEMA): TP1-02.....Guide for Determining Energy Efficiency for Distribution Transformers TR1-00......Transformers, Regulators, and Reactors E. Underwriters Laboratories, Inc. (UL): UL 506-08......Standard for Specialty Transformers UL 1561-11.....Dry-Type General Purpose and Power Transformers F. United States Department of Energy 10 CFR Part 431.....Energy Efficiency Program for Certain Commercial and Industrial Equipment ## PART 2 - PRODUCTS # 2.1 TRANSFORMERS - A. Unless otherwise specified, transformers shall be in accordance with NEMA, NEC, UL and as shown on the drawings. - B. Transformers shall have the following features: - 1. Self-cooled by natural convection, isolating windings, indoor and outdoor dry-type. Autotransformers will not be accepted, except as specifically allowed for buck-boost applications. - 2. Rating and winding connections shall be as shown on the drawings. - 3. Ratings shown on the drawings are for continuous duty without the use of cooling fans. - 4. Copper windings. - 5. Insulation systems: - a. Transformers 30 kVA and larger: UL rated 220 °C (428 °F) system with an average maximum rise by resistance of 150 °C (302 °F) in a maximum ambient of 40 °C (104 °F). - b. Transformers below 30 kVA: Same as for 30 kVA and larger or UL rated 185 °C (365 °F) system with an average maximum rise by resistance of 115 °C (239 °F) in a maximum ambient of 40 °C (104 °F). - 6. Core and coil assemblies: - a. Rigidly braced to withstand the stresses caused by short-circuit currents and rough handling during shipment. - b. Cores shall be grain-oriented, non-aging, and silicon steel. - c. Coils shall be continuous windings without splices except for taps. - d. Coil loss and core loss shall be minimized for efficient operation. - e. Primary and secondary tap connections shall be brazed or pressure type. - f. Coil windings shall have end filters or tie-downs for maximum strength. - 7. Certified sound levels, determined in accordance with NEMA, shall not exceed the following: | Transformer Rating | Sound Level Rating | |--------------------|--------------------| | 0 - 9 KVA | 40 dB | | 10 - 50 KVA | 45 dB | | 51 - 150 KVA | 50 dB | | 151 - 300 KVA | 55 dB | | 301 - 500 KVA | 60 dB | 8. If not shown on drawings, nominal impedance shall be as permitted by NEMA. - 9. Single phase transformers rated 15 kVA through 25 kVA shall have two 5% full capacity taps below normal rated primary voltage. All transformers rated 30 kVA and larger shall have two 2.5% full capacity taps above, and four 2.5% full capacity taps below normal rated primary voltage. - 10. Core assemblies shall be grounded to their enclosures with adequate flexible ground straps. #### 11. Enclosures: - a. Comprised of not less than code gauge steel. - b. Outdoor enclosures shall be NEMA 3R. - c. Temperature rise at hottest spot shall conform to NEMA Standards, and shall not bake and peel off the enclosure paint after the transformer has been placed in service. - d. Ventilation openings shall prevent accidental access to live components. - e. The enclosure at the factory shall be thoroughly cleaned and painted with manufacturer's prime coat and standard finish. - 12. Standard NEMA features and accessories, including ground pad, lifting provisions, and nameplate with the wiring diagram and sound level indicated. - 13. Dimensions and configurations shall conform to the spaces designated for their installations. - 14. Transformers shall meet the minimum energy efficiency values per NEMA TP1
as listed below: | kVA
Rating | Output
efficiency
(%) | |---------------|-----------------------------| | 15 | 97 | | 30 | 97.5 | | 45 | 97.7 | | 75 | 98 | | 112.5 | 98.2 | | 150 | 98.3 | | 225 | 98.5 | | 300 | 98.6 | | 500 | 98.7 | | 750 | 98.8 | - C. Install transformers with manufacturer's recommended clearance from wall and adjacent equipment for air circulation. Minimum clearance shall be 150 mm (6 inches). - D. Install transformers on vibration pads designed to suppress transformer noise and vibrations. ### 3.2 ACCEPTANCE CHECKS AND TESTS - A. Perform tests in accordance with the manufacturer's recommendations. In addition, include the following: - 1. Visual Inspection and Tests: - a. Compare equipment nameplate data with specifications and approved shop drawings. - b. Inspect physical and mechanical condition. - c. Inspect all field-installed bolted electrical connections, using the calibrated torque-wrench method to verify tightness of accessible bolted electrical connections. - d. Perform specific inspections and mechanical tests as recommended by manufacturer. - e. Verify correct equipment grounding. - f. Verify proper secondary phase-to-phase and phase-to-neutral voltage after energization and prior to connection to loads. # 3.3 FOLLOW-UP VERIFICATION A. Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the transformers are in good operating condition, and properly performing the intended function. ---END--- THIS PAGE WAS INTENTIONALLY LEFT BLANK # SECTION 26 24 16 PANELBOARDS #### PART 1 - GENERAL #### 1.1 DESCRIPTION A. This section specifies the furnishing, installation, and connection of panelboards. ### 1.2 RELATED WORK - A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26. - B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors. - C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents. - D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits. # 1.3 QUALITY ASSURANCE A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. ### 1.4 SUBMITTALS - A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. - 1. Shop Drawings: - a. Submit sufficient information to demonstrate compliance with drawings and specifications. - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data. ## 2. Manuals: - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts. - 1) Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards. - Include information for testing, repair, troubleshooting, assembly, and disassembly. - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection. - 3. Certifications: Two weeks prior to final inspection, submit the following. - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications. - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested. # 1.5 APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. - B. International Code Council (ICC): IBC-12.....International Building Code C. National Electrical Manufacturers Association (NEMA): PB 1-11.....Panelboards 250-08..... Enclosures for Electrical Equipment (1,000V Maximum) D. National Fire Protection Association (NFPA): 70-11......National Electrical Code (NEC) 70E-12......Standard for Electrical Safety in the Workplace E. Underwriters Laboratories, Inc. (UL): 50-95......Enclosures for Electrical Equipment 67-09.....Panelboards 489-09.................Molded Case Circuit Breakers and Circuit Breaker Enclosures # PART 2 - PRODUCTS ## 2.1 GENERAL REQUIREMENTS - A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings. - B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings. - C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein. - D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers. - E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type. - F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected. - G. Neutral bus shall be 100% rated, mounted on insulated supports. - H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors. - I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards. - J. In two-section panelboards, the main bus in each section shall be full size. The first section shall be furnished with subfeed lugs on the line side of main lugs only, or through-feed lugs for main breaker type panelboards, and have field-installed cable connections to the second section as shown on the drawings. Panelboard sections with tapped bus or crossover bus are not acceptable. - K. Series-rated panelboards are not permitted. # 2.2 ENCLOSURES AND TRIMS #### A. Enclosures: - 1. Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed. - 2. Enclosures shall not have ventilating openings. - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required. - 4. Provide manufacturer's standard option for prepunched knockouts on top and bottom endwalls. - 5. Include removable inner dead front cover, independent of the panelboard cover. ## B. Trims: 1. Hinged "door-in-door" type. - 2. Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts. - 3. Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable. - 4. Inner and outer doors shall open left to right. - 5. Trims shall be flush or surface type as shown on the drawings. ### 2.3 MOLDED CASE CIRCUIT BREAKERS - A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified. - B. Circuit breakers shall be bolt-on type. - C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than: - 1. 120/208 V Panelboard: 10,000 A symmetrical. - 2. 120/240 V Panelboard: 10,000 A symmetrical. - 3. 277/480 V Panelboard: 14,000 A symmetrical. - D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10x. Breaker trip setting shall be set in the field, based on the approved protective device study as specified in Section 26 05 71, ELECTRICAL SYSTEM PROTECTIVE DEVICE STUDY Breaker magnetic trip setting shall be set to maximum, unless otherwise noted. - E. Circuit breaker features shall be as follows: - 1. A rugged, integral housing of molded insulating material. - 2. Silver alloy contacts. - 3. Arc quenchers and phase barriers for each pole. - 4. Quick-make, quick-break, operating mechanisms. - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator. - 6. Electrically and mechanically trip free. - 7. An operating handle which indicates closed, tripped, and open positions. - 8. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open. - 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where shown on the drawings. - 10. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly. #### 2.4 SURGE PROTECTIVE DEVICES A. Where shown on the drawings, furnish panelboards with integral surge protective devices. Refer to Section 26 43 13, SURGE PROTECTIVE DEVICES. ## PART 3 - EXECUTION ## 3.1 INSTALLATION - A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified. - B. Locate panelboards so that the present and future conduits can be conveniently connected. - D. Install a printed schedule of circuits in each panelboard after approval by the
Contracting Officer's Representative (COR). Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards - E. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches). - F. Provide blank cover for each unused circuit breaker mounting space. - G. For panelboards located in areas accessible to the public, paint the exposed surfaces of the trims with finishes to match surrounding surfaces after the panelboards have been installed. Do not paint nameplates. - H. Rust and scale shall be removed from the inside of existing enclosures where new interior components are to be installed. Paint inside of enclosures with rust-preventive paint before the new interior components are installed. Provide new trim. Trim shall fit tight to the enclosure. ## 3.2 ACCEPTANCE CHECKS AND TESTS A. Perform in accordance with the manufacturer's recommendations. In addition, include the following: - 1. Visual Inspection and Tests: - a. Compare equipment nameplate data with specifications and approved shop drawings. - b. Inspect physical, electrical, and mechanical condition. - c. Verify appropriate anchorage and required area clearances. - d. Verify that circuit breaker sizes and types correspond to approved shop drawings. - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization. - f. Vacuum-clean enclosure interior. Clean enclosure exterior. ## 3.3 FOLLOW-UP VERIFICATION A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function. ---END--- # SECTION 26 27 26 WIRING DEVICES #### PART 1 - GENERAL #### 1.1 DESCRIPTION A. This section specifies the furnishing, installation, connection, and testing of wiring devices. ## 1.2 RELATED WORK - A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26. - B. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes. - C. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring. - D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents. ## 1.3 QUALITY ASSURANCE A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. #### 1.4 SUBMITTALS - A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. - 1. Shop Drawings: - a. Submit sufficient information to demonstrate compliance with drawings and specifications. - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information. ## 2. Manuals: - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts. - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection. - 3. Certifications: Two weeks prior to final inspection, submit the following. - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications. - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted. ## 1.5 APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only. - B. National Fire Protection Association (NFPA): - 70-11......National Electrical Code (NEC) - 99-12.....Health Care Facilities - C. National Electrical Manufacturers Association (NEMA): - WD 1-10......General Color Requirements for Wiring Devices - WD 6-08Wiring Devices Dimensional Specifications - D. Underwriter's Laboratories, Inc. (UL): - 5-11.....Surface Metal Raceways and Fittings - 20-10.....General-Use Snap Switches - 231-07.....Power Outlets - 467-07......Grounding and Bonding Equipment - 498-07......Attachment Plugs and Receptacles - 943-11.....Ground-Fault Circuit-Interrupters - 1449-07.....Surge Protective Devices - 1472-96.....Solid State Dimming Controls ## PART 2 - PRODUCTS #### 2.1 RECEPTACLES - A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings. - 1. Mounting straps shall be plated steel, with break-off plaster ears and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal. - 2. Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws. - B. Duplex Receptacles: Hospital-grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation. - 1. Bodies shall be ivory in color. - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched. - 3. Duplex Receptacles on Emergency Circuit: - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type. - 4. Ground Fault Interrupter Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. - a. Ground fault interrupter shall be consist of a differential current transformer, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second. - b. Ground Fault Interrupter Duplex Receptacles (not hospital-grade) shall be the same as ground fault interrupter hospital-grade receptacles except for the hospital-grade listing. - 5. Safety Type Duplex Receptacles: - a. Bodies shall be gray in color. - 1) Shall permit current to flow only while a standard plug is in the proper position in the receptacle. - 2) Screws exposed while the wall plates are in place shall be the tamperproof type. - 6. Duplex Receptacles (not hospital grade): Shall be the same as hospital grade duplex receptacles except for the hospital grade listing and as follows. - a. Bodies shall be brown nylon. - C. Receptacles; 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug. - D. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner. ## 2.2 TOGGLE SWITCHES - A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings. - 1. Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings. - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws. - 3. Switches shall be rated 20 amperes at 120-277 Volts AC. #### 2.4 WALL PLATES - A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable. - B. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches. - C. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges. ## 2.5 SURFACE MULTIPLE-OUTLET ASSEMBLIES - A. Shall have the following features: - 1. Enclosures: - a. Thickness of steel shall be not less than 1 mm (0.040 inch) for base and cover. Nominal dimensions shall be 40 mm x 70 mm (1-1/2 inches by 2-3/4 inches) with inside cross sectional area not less than 2250 square mm (3-1/2 square inches). The enclosures shall be thoroughly cleaned, phosphatized, and painted at the factory with primer and the manufacturer's standard baked enamel finish. - 2. Receptacles shall be duplex, specification grade. See paragraph 'RECEPTACLES' in this Section. Device cover plates shall be the manufacturer's standard corrosion resistant finish and shall not exceed the dimensions of the enclosure. - 3. Unless otherwise shown on drawings, receptacle spacing shall be 600 mm (24 inches) on centers. - 4. Conductors shall be as specified in Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLE. - 5. Installation fittings shall be the manufacturer's standard bends, offsets, device brackets, inside couplings, wire clips, elbows, and other components as required for a complete system. - 6. Bond the assemblies to the branch circuit
conduit system. #### PART 3 - EXECUTION #### 3.1 INSTALLATION - A. Installation shall be in accordance with the NEC and as shown as on the drawings. - B. Install wiring devices after wall construction and painting is complete. - C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor. - D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors. - E. Provide barriers in multigang outlet boxes to comply with the NEC. - F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment. - G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades. - H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down. - I. Install wall dimmers 1.2 M (48 inches) above floor. - J. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings. - K. Install vertically mounted receptacles with the ground pin up. Install horizontally mounted receptacles with the ground pin to the right. - L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws. M. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device. ## 3.2 ACCEPTANCE CHECKS AND TESTS - A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations. In addition, include the following: - 1. Visual Inspection and Tests: - a. Inspect physical and electrical condition. - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior. - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above. - d. Test GFCI receptacles. - 2. Healthcare Occupancy Tests: - a. Test hospital grade receptacles for retention force per NFPA 99. ---END--- # SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS ## PART 1 - GENERAL #### 1.1 DESCRIPTION A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below. ## 1.2 RELATED WORK - A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26. - B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors. - C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults. - D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits. - E. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers. ## 1.3 QUALITY ASSURANCE A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. ## 1.4 SUBMITTALS - A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. - 1. Shop Drawings: - a. Submit sufficient information to demonstrate compliance with drawings and specifications. - b. Submit the following data for approval: - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data. ## 2. Manuals: a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts. - Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers. - 2) Include information for testing, repair, troubleshooting, assembly, and disassembly. - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection. - 3. Certifications: Two weeks prior to final inspection, submit the following. - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications. - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested. #### 1.5 APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. - B. International Code Council (ICC): IBC-12.....International Building Code C. National Electrical Manufacturers Association (NEMA): FU 1-07.....Low Voltage Cartridge Fuses KS 1-06.....Enclosed and Miscellaneous Distribution Equipment Switches (600 Volts Maximum) D. National Fire Protection Association (NFPA): 70-11......National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 98-07......Enclosed and Dead-Front Switches 248-00.....Low Voltage Fuses 489-09..... Molded Case Circuit Breakers and Circuit Breaker Enclosures ## PART 2 - PRODUCTS ## 2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings. - B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches. - C. Shall be horsepower (HP) rated. - D. Shall have the following features: - 1. Switch mechanism shall be the quick-make, quick-break type. - 2. Copper blades, visible in the open position. - 3. An arc chute for each pole. - 4. External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions. - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection. - 6. Fuse holders for the sizes and types of fuses specified. - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor. - 8. Ground lugs for each ground conductor. - 9. Enclosures: - a. Shall be the NEMA types shown on the drawings. - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions. - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel. # 2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS A. Shall be the same as fused switches, but without provisions for fuses. # 2.3 FUSED SWITCHES RATED OVER 600 AMPERES TO 1200 AMPERES A. Shall be the same as fused switches, and shall be NEMA classified Heavy Duty (HD). ## 2.4 MOTOR RATED TOGGLE SWITCHES - A. Type 1, general purpose for single-phase motors rated up to 1 horsepower. - B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor. ## 2.5 CARTRIDGE FUSES - A. Shall be in accordance with NEMA FU 1. - B. Service Entrance: Class L, time delay. - C. Feeders: Class RK5, time delay. - D. Motor Branch Circuits: Class RK5, time delay. - E. Other Branch Circuits: Class RK5, time delay. - F. Control Circuits: Class CC, fast acting. ## 2.6 SEPARATELY-ENCLOSED CIRCUIT BREAKERS - A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS. - B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions. ## PART 3 - EXECUTION ## 3.1 INSTALLATION - A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified. - C. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses. ## 3.2 ACCEPTANCE CHECKS AND TESTS - A. Perform in accordance with the manufacturer's recommendations. In addition, include the following: - 1. Visual Inspection and Tests: - a. Compare equipment nameplate data with specifications and approved shop drawings. - b. Inspect physical, electrical, and mechanical condition. - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method. - d. Vacuum-clean enclosure interior. Clean enclosure exterior. ## 3.3 SPARE PARTS A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the Contracting Officer's Representative (COR). ---END--- # SECTION 31 20 00 EARTHWORK ## PART 1 - GENERAL #### 1.1 DESCRIPTION OF WORK: - A. This section specifies the requirements for furnishing all equipment, materials, labor, tools, and techniques for earthwork including, but not limited to, the following: - 1. Site preparation. - 2. Excavation. - 3. Underpinning. - 4. Filling and backfilling. - 5. Grading. - 6. Soil Disposal. - 7. Clean Up. ## 1.2 DEFINITIONS: - A. Unsuitable Materials: - 1. Fills:
Topsoil; frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 75 mm (3 inches); organic material, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable and any material with a liquid limit and plasticity index exceeding 40 and 15 respectively. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction, as defined by ASTM D698. - 2. Existing Subgrade (Except Footing Subgrade): Same materials as 1.2.A.1, that are not capable of direct support of slabs, pavement, and similar items with possible exception of improvement by compaction, proofrolling, or similar methods. - 3. Existing Subgrade (Footings Only): Same as paragraph 1, but no fill or backfill. If materials differ from design requirements, excavate to acceptable strata subject to Contracting Officer's Representative (COR) approval. - B. Building Earthwork: Earthwork operations required in area enclosed by a line located 1500 mm (5 feet) outside of principal building perimeter. It also includes earthwork required for auxiliary structures and buildings. - C. Trench Earthwork: Trenchwork required for utility lines. - D. Site Earthwork: Earthwork operations required in area outside of a line located 1500 mm (5 feet) outside of principal building perimeter and within new construction area with exceptions noted above. - E. Degree of compaction: Degree of compaction is expressed as a percentage of maximum density obtained by laboratory test procedure. This percentage of maximum density is obtained through use of data provided from results of field test procedures presented in ASTM D1556, ASTM D2167, and ASTM D6938. - F. Fill: Satisfactory soil materials used to raise existing grades. In the Construction Documents, the term "fill" means fill or backfill as appropriate. - G. Backfill: Soil materials or controlled low strength material used to fill an excavation. - H. Unauthorized excavation: Removal of materials beyond indicated sub-grade elevations or indicated lines and dimensions without written authorization by the COR. No payment will be made for unauthorized excavation or remedial work required to correct unauthorized excavation. - I. Authorized additional excavation: Removal of additional material authorized by the COR based on the determination by the Government's soils testing agency that unsuitable bearing materials are encountered at required sub-grade elevations. Removal of unsuitable material and its replacement as directed will be paid on basis of Conditions of the Contract relative to changes in work. - J. Subgrade: The undisturbed earth or the compacted soil layer immediately below granular sub-base, drainage fill, or topsoil materials. - K. Structure: Buildings, foundations, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface. - L. Borrow: Satisfactory soil imported from off-site for use as fill or backfill. - M. Drainage course: Layer supporting slab-on-grade used to minimize capillary flow of pore water. - N. Bedding course: Layer placed over the excavated sub-grade in a trench before laying pipe. Bedding course shall extend up to the springline of the pipe. - O. Sub-base Course: Layer placed between the sub-grade and base course for asphalt paving or layer placed between the sub-grade and a concrete pavement or walk. - P. Utilities include on-site underground pipes, conduits, ducts, and cables as well as underground services within buildings. - Q. Debris: Debris includes all materials located within the designated work area not covered in the other definitions and shall include but not be limited to items like vehicles, equipment, appliances, building - materials or remains thereof, tires, any solid or liquid chemicals or products stored or found in containers or spilled on the ground. - R. Contaminated soils: Soil that contains contaminates as defined and determined by the COR or the Government's testing agency. ## 1.3 RELATED WORK: - A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES. - B. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS. - C. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article, PHYSICAL DATA. - D. Erosion Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, and Section 32 90 00, PLANTING. - E. Paving sub-grade requirements: Section 32 12 16, ASPHALT PAVING. ## 1.4 CLASSIFICATION OF EXCAVATION: A. Unclassified Excavation: Removal and disposal of pavements and other man-made obstructions visible on surface; utilities, and other items including underground structures indicated to be demolished and removed; together with any type of materials regardless of character of material and obstructions encountered. ## B. Rock Excavation: - 1. Trenches and Pits: Removal and disposal of solid, homogenous, interlocking crystalline material with firmly cemented, laminated, or foliated masses or conglomerate deposits that cannot be excavated with a late-model, track-mounted hydraulic excavator; equipped with a 1050 mm (42 inch) wide, short-tip-radius rock bucket; rated at not less than 103 kW (138 hp) flywheel power with bucket-curling force of not less than 125 kN (28,090 lbf) and stick-crowd force of not less than 84.5 kN (19,000 lbf); measured according to SAE J-1179. Trenches in excess of 3000 mm (10 feet) wide and pits in excess of 9000 mm (30 feet) in either length or width are classified as open excavation. - 2. Open Excavation: Removal and disposal of solid, homogenous, interlocking crystalline material firmly cemented, laminated, or foliated masses or conglomerate deposits that cannot be dislodged and excavated with a late-model, track-mounted loader; rated at not less than 157 kW (210 hp) flywheel power and developing a minimum of 216 kN (48,510 lbf) breakout force; measured according to SAE J-732. - 3. Other types of materials classified as rock are unstratified masses, conglomerated deposits and boulders of rock material exceeding 0.76 - m3 (1 cubic yard) for open excavation, or 0.57 m3 (3/4 cubic yard) for footing and trench excavation that cannot be removed by rock excavating equipment equivalent to the above in size and performance ratings, without systematic drilling, ram hammering, ripping, or blasting, when permitted. - 4. Definitions of rock and guidelines for equipment are presented for general information purposes only. The Contractor is expected to use the information presented in the Geotechnical Engineering Report to evaluate the extent and competency of the rock and to determine both quantity estimations and removal equipment and efforts. #### 1.5 SUBMITTALS: - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Rock Excavation Report: - 1. Certification of rock quantities excavated. - 2. Excavation method. - 3. Labor. - 4. Equipment. - 5. Land Surveyor's or Civil Engineer's name and official registration stamp. - 6. Plot plan showing elevation. # C. Furnish to COR: - Contactor shall furnish resumes with all personnel involved in the project including Project Manager, Superintendent, and on-site Engineer. Project Manager and Superintendent should have at least 3 years of experience on projects of similar size. - 2. Soil samples. - a. Classification in accordance with ASTM D2487 for each on-site or borrow soil material proposed for fill, backfill, engineered fill, or structural fill. - b. Laboratory compaction curve in accordance with ASTM D698 for each on site or borrow soil material proposed for fill, backfill, engineered fill, or structural fill. - c. Test reports for compliance with ASTM D2940 requirements for subbase material. - d. Pre-excavation photographs and videotape in the vicinity of the existing structures to document existing site features, including surfaces finishes, cracks, or other structural blemishes that might be misconstrued as damage caused by earthwork operations. - e. The Contractor shall submit a scale plan daily that defines the location, limits, and depths of the area excavated. - 3. Contractor shall submit procedure and location for disposal of unused satisfactory material. Proposed source of borrow material. Notification of encountering rock in the project. Advance notice on the opening of excavation or borrow areas. Advance notice on shoulder construction for rigid pavements. #### 1.7 APPLICABLE PUBLICATIONS: - A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. - B. American Association of State Highway and Transportation Officials (AASHTO): T99-10.............Standard Method of Test for Moisture-Density Relations of Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 inch) Drop T180-10...........Standard Method of Test for Moisture-Density Relations of Soils using a 4.54 kg (10 lb) Rammer and a 457 mm (18 inch) Drop - D2940-09......Standard Specifications for Graded Aggregate Material for Bases or Subbases for Highways or Airports - D6938-10......Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth - D. Society of Automotive Engineers (SAE): J732-07......Specification Definitions - Loaders J1179-08......Hydraulic Excavator and Backhoe Digging Forces ## PART 2 - PRODUCTS #### 2.1 MATERIALS: - A. General: Provide borrow soil material when sufficient satisfactory soil materials are not available from excavations. - B. Fills: Material in compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups; free of rock or gravel larger than 75 mm (3 inches) in any dimension, debris,
waste, frozen materials, vegetation, and other deleterious matter. Material approved from on site or off site sources having a minimum dry density of 1760 kg/m3 (110 pcf), a maximum Plasticity Index of 15, and a maximum Liquid Limit of 40. - C. Engineered Fill: Naturally or artificially graded mixture of compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups, or as approved by the Engineer or material with at least 90 percent passing a 37.5-mm (1 1/2-inch) sieve and not more than 12 percent passing a 75-µm (No. 200) sieve, per ASTM D2940;. - D. Bedding: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940; except with 100 percent passing a 25 mm (1 inch) sieve and not more than 8 percent passing a 75-µm (No. 200) sieve. - E. Drainage Fill: Washed, narrowly graded mixture of crushed stone, or crushed or uncrushed gravel; ASTM D448; coarse-aggregate grading Size 57; with 100 percent passing a 37.5 mm (1 1/2-inch) sieve and 0 to 5 percent passing a 2.36 mm (No. 8) sieve. - F. Granular Fill: - Under concrete slab, granular fill shall consist of clean, crushed aggregate meeting the requirements of Colorado Department of Transportation Standard Specifications for Road and Bridge Construction for Class 6 aggregate base course. G. Buried Warning and Identification Tape: Metallic core or metallic-faced, acid- and alkali-resistant polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 3 inch minimum width, color coded as specific below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED (intended service) LINE BELOW" or similar wording. Color and printing shall be permanent, Unaffected by moisture or soil. Warning tape color codes: Red: Electric Yellow: Gas, Oil, Dangerous Materials Orange: Telephone and Other Communications Blue: Water Systems Green: Sewer Systems White: Steam Systems Gray: Compressed Air - H. Detectable Warning Tape for Non-Metallic Piping: Polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of the tape shall be 0.102 mm (0.004 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise and 8.6 MPa (1250 psi) crosswise. Tape shall be manufactured with integral wires, foil backing, or other means of enabling detection by a metal detector when tape is buried up to 0.9 m (3 feet) deep. Encase metallic element of the tape in a protective jacket or provide with other means of corrosion protection. - I. Detection Wire For Non-Metallic Piping: Detection wire shall be Insulated single strand, solid copper with a minimum of 12 AWG. ## PART 3 - EXECUTION # 3.1 SITE PREPARATION: - A. Clearing: Clear within limits of earthwork operations as shown. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash, and other obstructions. Remove materials from Medical Center. - B. Grubbing: Remove stumps and roots 75 mm (3 inch) and larger diameter. Undisturbed sound stumps, roots up to 75 mm (3 inch) diameter, and nonperishable solid objects a minimum of 900 mm (3 feet) below subgrade or finished embankment may be left. - C. Trees and Shrubs: Trees and shrubs, not shown for removal, may be removed from areas within 4500 mm (15 feet) of new construction and 2250 mm - mm (7.5 feet) of utility lines when removal is approved in advance by COR. Remove materials from Medical Center. Box, and otherwise protect from damage, existing trees and shrubs which are not shown to be removed in construction area. Immediately repair damage to existing trees and shrubs by trimming, cleaning and painting damaged areas, including roots, in accordance with standard industry horticultural practice for the geographic area and plant species. Do not store building materials closer to trees and shrubs, that are to remain, than farthest extension of their limbs. - D. Stripping Topsoil: Strip topsoil from within limits of earthwork operations as specified. Topsoil shall be a fertile, friable, natural topsoil of loamy character and characteristic of locality. Topsoil shall be capable of growing healthy horticultural crops of grasses. Stockpile topsoil and protect as directed by COR. Eliminate foreign materials, such as weeds, roots, stones, subsoil, frozen clods, and similar foreign materials larger than 0.014 m3 (1/2 cubic foot) in volume, from soil as it is stockpiled. Retain topsoil on station. Remove foreign materials larger than 50 mm (2 inches) in any dimension from topsoil used in final grading. Topsoil work, such as stripping, stockpiling, and similar topsoil work shall not, under any circumstances, be carried out when soil is wet so that the composition of the soil will be destroyed. - E. Concrete Slabs and Paving: Score deeply or saw cut to insure a neat, straight cut, sections of existing concrete slabs and paving to be removed where excavation or trenching occurs. Extend pavement section to be removed a minimum of 300 mm (12 inches) on each side of widest part of trench excavation and insure final score lines are approximately parallel unless otherwise indicated. Remove material from Medical Center. - F. Lines and Grades: Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS, shall establish lines and grades. - 1. Grades shall conform to elevations indicated on plans within the tolerances herein specified. Generally grades shall be established to provide a smooth surface, free from irregular surface changes. Grading shall comply with compaction requirements and grade cross sections, lines, and elevations indicated. Where spot grades are indicated the grade shall be established based on interpolation of the elevations between the spot grades while maintaining appropriate transition at structures and paving and uninterrupted drainage flow into inlets. - 2. Locations of existing and proposed elevations indicated on plans are from a site survey that measured spot elevations and subsequently generated existing contours and spot elevations. Proposed spot elevations and contour lines have been developed utilizing the existing conditions survey and developed contour lines and may be approximate. Contractor is responsible to notify COR of any differences between existing elevations shown on plans and those encountered on site by Surveyor/Engineer described above. Notify COR of any differences between existing or constructed grades, as compared to those shown on the plans. - 3. Subsequent to establishment of lines and grades, Contractor will be responsible for any additional cut and/or fill required to ensure that site is graded to conform to elevations indicated on plans. - 4. Finish grading is specified in Section 32 90 00, PLANTING. - G. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals shall be in accordance with all applicable Federal, State and local regulations. No burning of materials is permitted onsite. ## 3.2 EXCAVATION: - A. Shoring, Sheeting and Bracing: Shore, brace, or slope, its angle of repose or to an angle considered acceptable by the COR, banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities. - 1. Design of the temporary support of excavation system is the responsibility of the Contractor. The Contractor shall submit a Shoring and Sheeting plan for approval 15 days prior to starting work. Submit drawings and calculations, certified by a registered professional engineer, describing the methods for shoring and sheeting of excavations. Shoring, including sheet piling, shall be furnished and installed as necessary to protect workmen, banks, adjacent paving, structures, and utilities. Shoring, bracing, and sheeting shall be removed as excavations are backfilled, in a manner to prevent caving. - Construction of the support of excavation system shall not interfere with the permanent structure and may begin only after a review by the COR. - 3. Extend shoring and bracing to a minimum of 1500 mm (5 feet) below the bottom of excavation. Shore excavations that are carried below elevations of adjacent existing foundations. - 4. If bearing material of any foundation is disturbed by excavating, improper shoring or removal of existing or temporary shoring, placing of backfill, and similar operations, the Contractor shall provide a concrete fill support under disturbed foundations, as directed by COR, at no additional cost to the Government. Do not remove shoring until permanent work in excavation has been inspected and approved by COR. - B. Excavation Drainage: Operate pumping equipment, and/or provide other materials, means and equipment, as required to keep excavation free of water and subgrade dry, firm, and undisturbed until approval of permanent work has been received from COR. Approval by the COR is also required before placement of the permanent work on all subgrades. Groundwater flowing toward or into excavations shall be controlled to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. French drains, sumps, ditches or trenches will not be permitted within 0.9 m (3 feet) of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Control measures shall be taken by the time the excavation reaches the water level in order to maintain the integrity of the in situ material. While the excavation is open, the water level shall be maintained
continuously, at least 3 feet below the working level. Operate dewatering system continuously until construction work below existing water levels is complete. - C. Subgrade Protection: Protect subgrades from softening, undermining, washout, or damage by rain or water accumulation. Reroute surface water runoff from excavated areas and not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches. When subgrade for foundations has been disturbed by water, remove disturbed material to firm undisturbed material after water is brought under control. Replace disturbed subgrade in trenches with concrete or material approved by the COR. ## D. Building Earthwork: - 1. Excavation shall be accomplished as required by drawings and specifications. - 2. Excavate foundation excavations to solid undisturbed subgrade. - 3. Remove loose or soft materials to a solid bottom. - 4. Fill excess cut under footings or foundations with 25 MPa (3000 psi) concrete poured separately from the footings. - 5. Do not tamp earth for backfilling in footing bottoms, except as specified. - 6. Slope grades to direct water away from excavations and to prevent ponding. - 7. Capillary water barrier (granular fill) under concrete floor and area-way slabs on grade shall be placed directly on the subgrade and shall be compacted with a minimum of two passes of a hand-operated plate-type vibratory compactor. - 8. Ensure that footing subgrades have been inspected and approved by the COR prior to concrete placement. Excavate to bottom of pile cap prior to placing or driving piles, unless authorized otherwise by the COR. Backfill and compact over excavations and changes in grade due to pile driving operations to 95 percent of ASTM D698 maximum density. ## E. Trench Earthwork: - 1. Utility trenches (except sanitary and storm sewer): - a. Excavate to a width as necessary for sheeting and bracing and proper performance of the work. - b. Grade bottom of trenches with bell holes scooped out to provide a uniform bearing. - c. Support piping on bedding material as shown on Project Plans. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness. - d. Length of open trench in advance of piping laying shall not be greater than is authorized by COR. - e. Provide buried utility lines with utility identification tape. Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade - f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over its entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe. - g. Bedding shall be of the type and thickness shown. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C605-13, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D 698 maximum density. Plastic piping shall have bedding as shown in the appropriate details in the project plans. Provide materials as follows: - 1) Clean, coarse-grained sand with maximum particle size less than 4.75 mm (No. 4 sieve) and classified as SW or SP in accordance with ASTM D2487 shall be used for bedding, haunching and initial cover for the buried piping as shown on the trench details in the plans. - h. Trench plugs shall be installed as depicted on the project plans and may be constructed from compacted clay soils with ASTM D2487 classification of CL or CH and with at least 60 percent fines(passing the No. 200 sieve) and a Plasticity Index of 15 or greater. Alternately, trench plugs may be constructed with lean concrete, approved controlled low strength material, or on-site silty sand soils processed with 20 pounds bentonite clay per cubic yard. Lean concrete shall consist of 8-inch maximum slump flowable fill material that does not require rodding or vibrating to place and develops 100 psi compressive strength after 7 days. A mix design for the lean concrete shall be submitted for approval to the COR. - F. Site Earthwork: Earth excavation includes excavating pavements and obstructions visible on surface; underground structures, utilities, and other items indicated to be removed; together with soil, boulders, and other materials not classified as rock or unauthorized excavation. Excavation shall be accomplished as required by drawings and specifications. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 25 mm (1 inch). Extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, complying with OSHA requirements, and for inspections. Remove subgrade materials that are determined by COR as unsuitable, and replace with acceptable material. If there is a question as to whether material is unsuitable or not, the contractor shall obtain samples of the material, under the direction of the COR, and the materials shall be examined by an independent testing laboratory for soil classification to determine whether it is unsuitable or not. It is anticipated that most, if not all, of the material excavated from trenches will not be suitable for use as backfill and shall be hauled off and replaced with suitable materials. Therefore, no additional compensation will be authorized for removal and replacement of unsuitable material. ## 1. Site Grading: - a. Provide a smooth transition between adjacent existing grades and new grades. - b. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances. - c. Slope grades to direct water away from buildings and to prevent ponds from forming where not designed. Finish subgrades to required elevations within the following tolerances: - 1) Lawn or Unpaved Areas: Plus or minus 25 mm (1 inch). - 2) Walks: Plus or minus 13 mm (1/2 inch). - 3) Pavements: Plus or minus 13 mm (1/2 inch). - d. Grading Inside Building Lines: Finish subgrade to a tolerance of 13 mm (1/2 inch) when tested with a 3000 mm (10 foot) straightedge. #### 3.3 FILLING AND BACKFILLING: - A. General: Do not fill or backfill until all debris, water, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from excavation. For fill and backfill, use excavated materials and borrow meeting the criteria specified herein, as applicable. Borrow will be supplied at no additional cost to the Government. Do not use unsuitable excavated materials. Do not backfill until foundation walls have been completed above grade and adequately braced, waterproofing or dampproofing applied, foundation drainage, and pipes coming in contact with backfill have been installed and work inspected and approved by COR. - B. Placing: Place materials in horizontal layers not exceeding 200 mm (8 inches) in loose depth for material compacted by heavy compaction equipment, and not more than 100 mm (4 inches) in loose depth for material compacted by hand-operated tampers and then compacted. Place backfill and fill materials evenly on all sides of structures to - required elevations, and uniformly along the full length of each structure. Place no material on surfaces that are muddy, frozen, or contain frost. - C. Compaction: Compact with approved tamping rollers, sheepsfoot rollers, pneumatic tired rollers, steel wheeled rollers, vibrator compactors, or other approved equipment (hand or mechanized) well suited to soil being compacted. Do not operate mechanized vibratory compaction equipment within 3000 mm (10 feet) of new or existing building walls without prior approval of COR. Moisten or aerate material as necessary to provide moisture content that will readily facilitate obtaining specified compaction with equipment used. Backfill adjacent to any and all types of structures shall be placed and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials to prevent wedging action or eccentric loading upon or against the structure. Compact soil to not less than the following percentages of maximum dry density, according to ASTM D698 or ASTM D1557 as specified below: - 1. Fills, Embankments, and Backfill - a. Under proposed structures, building slabs, steps, and paved areas, scarify and recompact top 300 mm (12 inches) of existing subgrade and each layer of backfill or fill material in accordance with ASTM D698 to 95 percent. - b. Curbs, curbs and gutters, ASTM D698 to 95 percent. - c. Under Sidewalks, scarify and recompact top 150 mm (6 inches) below subgrade and compact each layer of backfill or fill material in accordance with ASTM D698 to 95 percent. - d. Landscaped areas, top 400 mm (16 inches), ASTM D698 to 85 percent. - e. Landscaped areas, below 400 mm (16 inches) of finished grade, ASTM D698 to 90 percent. - 2. Natural Ground (Cut or Existing) - a. Under building slabs, steps and paved areas, top 150 mm (6 inches), ASTM D698 to 95 percent. -
b. Curbs, curbs and gutters, top 150 mm (6 inches), ASTM D698 to 95 percent. - c. Under sidewalks, top 150 mm (6 inches), ASTM D698 to 95 percent. #### 3.4 GRADING: A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing - finished grades. Provide a smooth transition between abrupt changes in slope. - B. Cut rough or sloping rock to level beds for foundations. In pipe spaces or other unfinished areas, fill low spots and level off with coarse sand or fine gravel. - C. Slope backfill outside building away from building walls for a minimum distance of 1800 mm (6 feet). - D. Finish grade earth floors in pipe basements as shown to a level, uniform slope and leave clean. - E. Finished grade shall be at least 150 mm (6 inches) below bottom line of window or other building wall openings unless greater depth is shown. - F. Place crushed stone or gravel fill under concrete slabs on grade, tamped, and leveled. Thickness of fill shall be 150 mm (6 inches) unless otherwise shown. - G. Finish subgrade in a condition acceptable to COR at least one day in advance of paving operations. Maintain finished subgrade in a smooth and compacted condition until succeeding operation has been accomplished. Scarify, compact, and grade subgrade prior to further construction when approved compacted subgrade is disturbed by Contractor's subsequent operations or adverse weather. - H. Grading for Paved Areas: Provide final grades for both subgrade and base course to \pm 6 mm (0.25 inches) of indicated grades. ## 3.5 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL: - A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center property. - B. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed. - C. Segregate all excavated contaminated soil designated by the COR from all other excavated soils, and stockpile on site on two 0.15 mm (6 mil) polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of excavated contaminated material in accordance with State and Local requirements. ## 3.6 CLEAN UP: Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove all debris, rubbish, and excess material from Medical Center Property. ---- E N D ---- THIS PAGE WAS INTENTIONALLY LEFT BLANK # SECTION 32 05 23 CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section shall cover site work concrete constructed upon the prepared subgrade and in conformance with the lines, grades, thickness, and cross sections shown on the Drawings. Construction shall include the following: - B. Curb, gutter, and any other concrete structures adjacent to asphalt pavement through which utility crossings are necessary. - C. Pedestrian Pavement: sidewalks, pedestrian crossings, wheelchair curb ramps, and any other similar concrete structures through which utility crossings are necessary. - D. Vehicular Pavement: Service courts, driveways, parking lots, and any other concrete pavement through which utility crossings are necessary. - E. Equipment Pads: Temporary chiller pads. ## 1.2 RELATED WORK - A. Section 00 72 00, GENERAL CONDITIONS. - B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES - C. Section 01 45 29, TESTING LABORATORY SERVICES. - D. Section 03 30 00, CAST-IN-PLACE CONCRETE. - E. Section 31 20 00, EARTHWORK. ## 1.3 DESIGN REQUIREMENTS Design all elements with the latest published version of applicable codes. #### 1.4 WEATHER LIMITATIONS - A. Hot Weather: Follow the recommendations of ACI 305 or as specified to prevent problems in the manufacturing, placing, and curing of concrete that can adversely affect the properties and serviceability of the hardened concrete. Methods proposed for cooling materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by Contracting Officer's Representative (COR). - B. Cold Weather: Follow the recommendations of ACI 306 or as specified to prevent freezing of concrete and to permit concrete to gain strength properly. Use only the specified non-corrosive, non-chloride accelerator. Do not use calcium chloride, thiocyantes or admixtures containing more than 0.05 percent chloride ions. Methods proposed for heating materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by COR. ## 1.5 SELECT SUBBASE MATERIAL JOB-MIX The Contractor shall retain a testing laboratory to design a select subbase material mixture and submit a job-mix formula to the COR, in writing, for approval. The formula shall include the source of materials, gradation, plasticity index, liquid limit, and laboratory compaction curves indicating maximum density at optimum moisture. Cost of the testing laboratory to be included in the Contractor's cost of project. # 1.6 SUBMITTALS Contractor shall submit the following. - A. Manufacturers' Certificates and Data certifying that the following materials conform to the requirements specified. - 1. Expansion joint filler - 2. Hot poured sealing compound - 3. Reinforcement - 4. Curing materials - B. Jointing Plan for all concrete areas. - C. Concrete Mix Design. - D. Concrete Test Reports - E. Construction Staking Notes from Surveyor. - F. Data and Test Reports: Select subbase material. - 1. Job-mix formula. - 2. Source, gradation, liquid limit, plasticity index, percentage of wear, and other tests as specified and in referenced publications. # 1.7 APPLICABLE PUBLICATIONS The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Refer to the latest edition of all referenced Standards and codes. A. American Association of State Highway and Transportation Officials (AASHTO): | M147-65-UL | .Materials for Aggregate and Soil-Aggregate | |------------|--| | | Subbase, Base and Surface Courses (R 2012) | | M148-05-UL | .Liquid Membrane-Forming Compounds for Curing | | | Concrete (ASTM C309) | | M171-05-UL | .Sheet Materials for Curing Concrete (ASTM C171) | | | M182-05-ULBurlap Cloth Made from Jute or Kenaf and Cotton Mats | |----|---| | в. | American Society for Testing and Materials (ASTM): | | | A82/A82M-07Standard Specification for Steel Wire, Plain, | | | for Concrete Reinforcement | | | A185/185M-07Standard Specification for Steel Welded Wire | | | Reinforcement, Plain, for Concrete | | | A615/A615M-12Standard Specification for Deformed and Plain | | | Carbon Steel Bars for Concrete Reinforcement | | | A653/A653M-11Standard Specification for Steel Sheet, Zinc | | | Coated (Galvanized) or Zinc Iron Alloy Coated | | | (Galvannealed) by the Hot Dip Process | | | A706/A706M-09bStandard Specification for Low Alloy Steel | | | Deformed and Plain Bars for Concrete | | | Reinforcement | | | A767/A767M-09Standard Specification for Zinc Coated | | | (Galvanized) Steel Bars for Concrete | | | Reinforcement | | | A775/A775M-07bStandard Specification for Epoxy Coated | | | Reinforcing Steel Bars | | | A820/A820M-11Standard Specification for Steel Fibers for | | | Fiber Reinforced Concrete | | | C31/C31M-10Standard Practice for Making and Curing Concrete | | | Test Specimens in the field | | | C33/C33M-11aStandard Specification for Concrete Aggregates | | | C39/C39M-12Standard Test Method for Compressive Strength of | | | Cylindrical Concrete Specimens | | | C94/C94M-12Standard Specification for Ready Mixed Concrete | | | C143/C143M-10aStandard Test Method for Slump of Hydraulic | | | Cement Concrete | | | C150/C150M-12Standard Specification for Portland Cement | | | C171-07Standard Specification for Sheet Materials for | | | Curing Concrete | | | C172/C172M-10Standard Practice for Sampling Freshly Mixed | | | Concrete | | | C173/C173M-10bStandard Test Method for Air Content of Freshly | | | Mixed Concrete by the Volumetric Method | | | C192/C192M-07Standard Practice for Making and Curing Concrete | | | Test Specimens in the Laboratory | | Standard Test Method for Air Content of Freshly | |--| | Mixed Concrete by the Pressure Method | | Standard Specification for Air Entraining | | Admixtures for Concrete | | Standard Specification for Liquid Membrane | | Forming Compounds for Curing Concrete | | Standard Specification for Chemical Admixtures | | for Concrete | | Standard Specification for Coal Fly Ash and Raw | | or Calcined Natural Pozzolan for Use in Concrete | | Standard Test Method for Resistance of Concrete | | to Rapid Freezing and Thawing | | Standard Specification for Preformed Expansion | | Joint Filler for Concrete Paving and Structural | | Construction (Non-extruding and Resilient | | Bituminous Types) | | Standard Test Method for Indicating Moisture in | | Concrete by the Plastic Sheet Method. | | Standard Specification for Polyethylene Sheeting | | for Construction, Industrial and Agricultural | | Applications | | | # C. American Welding Society (AWS): D1.4/D1.4M (2005)......Structural Welding Code - Reinforcing Steel # PART 2 - PRODUCTS # 2.1 GENERAL A. Concrete Type: Concrete shall be as per Table 1 - Concrete Type, air entrained. TABLE I - CONCRETE TYPE | | Concrete | Strength | Non-Air-
Entrained | Air-Entrained | | | |--------|--|----------------------|-----------------------
---------------------------------|-------------------------------|--| | | Min. 28 Day
Comp. Str.
Psi (MPa) | Str. lbs/c.yd Cement | | Min. Cement lbs/c. yd (kg/m³) | Max. Water
Cement
Ratio | | | Type A | 5000 (35) ^{1,3} | 630 (375) | 0.45 | 650 (385) | 0.40 | | | Туре В | B 4000 (30) ^{1,3} | 550 (325) | 0.55 | 570 (340) | 0.50 | | | Type C | 3000 (25) ^{1,3} | 470 (280) | 0.65 | 490 (290) | 0.55 | | | Type D | 3000 (25) ^{1,2} | 500 (300) | * | 520 (310) | * | | 1. If trial mixes are used, the proposed mix design shall achieve a compressive strength 1200 psi (8.3 MPa) in excess of the compressed - strength. For concrete strengths above 5000 psi (35 Mpa), the proposed mix design shall achieve a compressive strength 1400 psi (9.7 MPa) in excess of the compressed strength. - 2. For concrete exposed to high sulfate content soils maximum water cement ratio is 0.44. - 3. Determined by Laboratory in accordance with ACI 211.1 for normal concrete or ACI 211.2 for lightweight structural concrete. - B. Maximum Slump: Maximum slump, as determined by ASTM C143 with tolerances as established by ASTM C94, for concrete to be vibrated shall be as shown in Table II. | TYPE | MAXIMUM SLUMP* | | | | |--|---|--|--|--| | Curb & Gutter | 3 inches (75 mm) | | | | | Pedestrian Pavement | 3 inches (75 mm) | | | | | Vehicular Pavement | 2 inches (50 mm) (Machine
Finished)
4 inches (100 mm) (Hand Finished) | | | | | Equipment Pad | 3 to 4 inches (75 to 100 mm) | | | | | * For concrete to be vibrated: Slump as determined by ASTM C143. Tolerances as established by ASTM C94. | | | | | TABLE II - MAXIMUM SLUMP - INCHES (MM) ## 2.2 REINFORCEMENT A. The type, amount, and locations of steel reinforcement shall be as shown on the drawings and in the specifications. # 2.3 SELECT SUBBASE (WHERE REQUIRED) A. Subbase material shall consist of select granular material composed of sand, sand-gravel, crushed stone, crushed or granulated slag, with or without soil binder, or combinations of these materials conforming to AASHTO M147, as follows. GRADE REQUIREMENTS FOR SOILS USED AS SUBBASE MATERIALS, BASE COURSES AND SURFACES COURSES | AASHT | O M147 | Percentage Passing by Mass | | | | | | |--------|--------|----------------------------|-------|-------|--------|--------|--------| | Sieve | Size | Grades | | | | | | | (mm) | (in) | А | В | С | D | E | F | | 50 | 2 | 100 | 100 | | | | | | 25 | 1 | | 75-95 | 100 | 100 | 100 | 100 | | 9.5 | 3/8 | 30-65 | 40-75 | 50-85 | 60-100 | | | | 4.47 | No. 4 | 25-55 | 30-60 | 35-65 | 50-85 | 55-100 | 70-100 | | 2.00 | No. 10 | 15-40 | 20-45 | 25-50 | 40-70 | 40-100 | 55-100 | | 0.425 | No. 40 | 8-20 | 15-30 | 15-30 | 25-45 | 20-50 | 30-70 | |-------|---------|------|-------|-------|-------|-------|-------| | 0.075 | No. 200 | 2-8 | 5-20 | 5-15 | 5-20 | 6-20 | 8-25 | - B. Materials meeting other gradations than that noted will be acceptable whenever the gradations are within a tolerance of three to five percent, plus or minus, of the single gradation established by the job-mix formula, or as recommended by the geotechnical engineer and approved by the COR. - C. Subbase material shall produce a compacted, dense-graded course, meeting the density requirement specified herein. ## 2.4 FORMS - A. Use metal or wood forms that are straight and suitable in cross-section, depth, and strength to resist springing during depositing and consolidating the concrete, for the work involved. - B. Do not use forms if they vary from a straight line more than 1/8 inch (3 mm) in any ten foot (3000 mm) long section, in either a horizontal or vertical direction. - C. Wood forms should be at least 2 inches (50 mm) thick (nominal). Wood forms shall also be free from warp, twist, loose knots, splits, or other defects. Use approved flexible or curved forms for forming radii. ## 2.5 CONCRETE CURING MATERIALS - A. Concrete curing materials shall conform to one of the following: - 1. Burlap having a weight of seven ounces (233 grams) or more per yard (square meter) when dry. - 2. Impervious Sheeting conforming to ASTM C171. - 3. Liquid Membrane Curing Compound conforming to ASTM C309, Type 2 and shall be free of paraffin or petroleum. # 2.6 EXPANSION JOINT FILLERS Material shall conform to ASTM D1751-04. ## PART 3 - EXECUTION #### 3.1 SUBGRADE PENETRATION - A. Prepare, construct, and finish the subgrade as specified in Section 31 20 00, EARTHWORK. - B. Maintain the subgrade in a smooth, compacted condition, in conformance with the required section and established grade until the succeeding operation has been accomplished. ## 3.2 SELECT SUBBASE (WHERE REQUIRED) A. Mixing: Proportion the select subbase by weight or by volume in quantities so that the final approved job-mixed formula gradation, liquid limit, and plasticity index requirements will be met after subbase course has been placed and compacted. Add water in approved quantities, measured by weight or volume, in such a manner to produce a uniform blend. ## B. Placing: - 1. Place the mixed material on the prepared subgrade in a uniform layer to the required contour and grades, and to a loose depth not to exceed 8 inches (200 mm), and that when compacted, will produce a layer of the designated thickness. - 2. When the designated compacted thickness exceeds 6 inches (150 mm), place the material in layers of equal thickness. Remove unsatisfactory areas and replace with satisfactory mixture, or mix the material in the area. - 3. In no case will the addition of thin layers of material be added to the top layer in order to meet grade. - 4. If the elevation of the top layer is 1/2 inch (13 mm) or more below the grade, excavate the top layer and replace with new material to a depth of at least 3 inches (75 mm) in compacted thickness. # C. Compaction: - 1. Perform compaction with approved hand or mechanical equipment well suited to the material being compacted. - Moisten or aerate the material as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used. - Compact each layer to at least 95 percent or 100 percent of maximum density as specified in Section 31 20 00, EARTHWORK. - D. Smoothness Test and Thickness Control: Test the completed subbase for grade and cross section with a straight edge. - 1. The surface of each layer shall not show any deviations in excess of 3/8 inch (10 mm). - 2. The completed thickness shall be within 1/2 inch (13 mm) of the thickness as shown on the Drawings. # E. Protection: - 1. Maintain the finished subbase in a smooth and compacted condition until the concrete has been placed. - 2. When Contractor's subsequent operations or adverse weather disturbs the approved compacted subbase, excavate, and reconstruct it with new material meeting the requirements herein specified, at no additional cost to the Government. ## 3.3 SETTING FORMS ## A. Base Support: - 1. Compact the base material under the forms true to grade so that, when set, they will be uniformly supported for their entire length at the grade as shown. - 2. Correct imperfections or variations in the base material grade by cutting or filling and compacting. # B. Form Setting: - 1. Set forms sufficiently in advance of the placing of the concrete to permit the performance and approval of all operations required with and adjacent to the form lines. - 2. Set forms to true line and grade and use stakes, clamps, spreaders, and braces to hold them rigidly in place so that the forms and joints are free from play or movement in any direction. - 3. Forms shall conform to line and grade with an allowable tolerance of 1/8 inch (3 mm) when checked with a straightedge and shall not deviate from true line by more than 1/4 inch (6 mm) at any point. - 4. Do not remove forms until removal will not result in damaged concrete or at such time to facilitate finishing. - 5. Clean and oil forms each time they are used. - 6. Make necessary corrections to forms immediately before placing concrete. - 7. When any form has been disturbed or any subgrade or subbase has become unstable, reset and recheck the form before placing concrete. - C. The Contractor's Registered Professional Land Surveyor, specified in Section 00 72 00, GENERAL CONDITIONS, shall establish the control, alignment and the grade elevations of the forms. Staking notes shall be submitted for approval to the COR prior to placement of concrete. If discrepancies exist between the field conditions and the Drawings, Contractor shall notify COR immediately. No placement of concrete shall occur if a discrepancy greater than 1 inch (25 mm) is discovered. # 3.4 EQUIPMENT - A. The COR shall approve equipment and tools necessary for handling materials and performing all parts of the work prior to commencement of work. - B. Maintain equipment and tools in satisfactory working condition at all times. # 3.5 PLACING REINFORCEMENT - A. Reinforcement shall be free from dirt, oil, rust, scale or other substances that prevent the bonding of the concrete to the reinforcement. All reinforcement shall be supported for proper placement within the concrete section. - B. Before the concrete is placed, the COR shall approve the reinforcement placement, which shall be accurately and securely fastened in place with suitable supports and ties. The type, amount, and position of the reinforcement shall be as shown on the Drawings. ### 3.6 PLACING CONCRETE - GENERAL - A. Obtain approval of the COR before placing concrete. - B. Remove debris and other foreign material from between the forms before placing concrete. - C. Before the concrete is placed, uniformly moisten the subgrade, base, or subbase appropriately, avoiding puddles of water. - D. Convey concrete from mixer to final place of deposit by a method which will prevent segregation or
loss of ingredients. Deposit concrete so that it requires as little handling as possible. - E. While being placed, spade or vibrate and compact the concrete with suitable tools to prevent the formation of voids or honeycomb pockets. Vibrate concrete well against forms and along joints. Over-vibration or manipulation causing segregation will not be permitted. Place concrete continuously between joints without bulkheads. - F. Install a construction joint whenever the placing of concrete is suspended for more than 30 minutes and at the end of each day's work. - G. Workmen or construction equipment coated with foreign material shall not be permitted to walk or operate in the concrete during placement and finishing operations. - H. Cracked or Chipped Concrete Surfaces and Bird Baths. Cracked or chipped concrete and bird baths will not be allowed. Concrete with cracks or chips and bird baths will be removed and replaced to the nearest joints, and as approved by the COR, by the Contractor with no additional cost to the Government. # 3.7 PLACING CONCRETE FOR CURB AND GUTTER, PEDESTRIAN PAVEMENT, AND EQUIPMENT PADS - A. Place concrete in the forms in one layer of such thickness that, when compacted and finished, it will conform to the cross section as shown. - B. Deposit concrete as near to joints as possible without disturbing them but do not dump onto a joint assembly. - C. After the concrete has been placed in the forms, use a strike-off guided by the side forms to bring the surface to the proper section to be compacted. - D. Consolidate the concrete thoroughly by tamping and spading, or with approved mechanical finishing equipment. - E. Finish the surface to grade with a wood or metal float. - F. All Concrete pads and pavements shall be constructed with sufficient slope to drain properly. ### 3.8 PLACING CONCRETE FOR VEHICULAR PAVEMENT - A. Deposit concrete into the forms as close as possible to its final position. - B. Place concrete rapidly and continuously between construction joints. - C. Strike off concrete and thoroughly consolidate by a finishing machine, vibrating screed, or by hand-finishing. - D. Finish the surface to the elevation and crown as shown. - E. Deposit concrete as near the joints as possible without disturbing them but do not dump onto a joint assembly. Do not place adjacent lanes without approval by the COR. ### 3.9 CONCRETE FINISHING - GENERAL - A. The sequence of operations, unless otherwise indicated, shall be as follows: - 1. Consolidating, floating, straight-edging, troweling, texturing, and edging of joints. - 2. Maintain finishing equipment and tools in a clean and approved condition. ### 3.10 CONCRETE FINISHING CURB AND GUTTER - A. Round the edges of the gutter and top of the curb with an edging tool to a radius of 1/4 inch (6 mm) or as otherwise detailed. - B. Float the surfaces and finish with a smooth wood or metal float until true to grade and section and uniform in textures. - C. Finish the surfaces, while still wet, with a bristle type brush with longitudinal strokes. - D. Immediately after removing the front curb form, rub the face of the curb with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. Brush the surface, while still wet, in the same manner as the gutter and curb top. - E. Except at grade changes or curves, finished surfaces shall not vary more than 1/8 inch (3 mm) for gutter and 1/4 (6 mm) for top and face of curb, when tested with a 10 foot (3000 mm) straightedge. - F. Remove and reconstruct irregularities exceeding the above for the full length between regularly scheduled joints. - G. Correct any depressions which will not drain. See Article 3.6, Paragraph H, above. - H. Visible surfaces and edges of finished curb, gutter, and/or combination curb and gutter shall be free of blemishes, form marks, and tool marks, and shall be uniform in color, shape, and appearance. ### 3.11 CONCRETE FINISHING PEDESTRIAN PAVEMENT - A. Sidewalks, pedestrian crossings, wheelchair curb ramps, and any other similar concrete structures: - 1. Finish the surfaces to grade and cross section with a metal float, troweled smooth and finished with a broom moistened with clear water. - 2. Brooming shall be transverse to the line of traffic. - 3. Finish all slab edges, including those at formed joints, carefully with an edger having a radius as shown on the Drawings. - 4. Unless otherwise indicated, edge the transverse joints before brooming. The brooming shall eliminate the flat surface left by the surface face of the edger. Execute the brooming so that the corrugation, thus produced, will be uniform in appearance and not more than 1/16 inch (2 mm) in depth. - 5. The completed surface shall be uniform in color and free of surface blemishes, form marks, and tool marks. The finished surface of the pavement shall not vary more than 3/16 inch (5 mm) when tested with a 10 foot (3000 mm) straightedge. - 6. The thickness of the pavement shall not vary more than 1/4 inch (6 mm). - 7. Remove and reconstruct irregularities exceeding the above for the full length between regularly scheduled joints at no additional cost to the Government. - B. Steps: The method of finishing the steps and the sidewalls is similar to above except as herein noted. - 1. Remove the riser forms one at a time, starting with the top riser. - 2. After removing the riser form, rub the face of the riser with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. Use an outside edger to round the corner of the tread; use an inside edger to finish the corner at the bottom of the riser. - 3. Give the risers and sidewall a final brush finish. The treads shall have a final finish with a stiff brush to provide a non-slip surface. 4. The texture of the completed steps shall present a neat and uniform appearance and shall not deviate from a straightedge test more than 3/16 inch (5 mm). # 3.12 CONCRETE FINISHING FOR VEHICULAR PAVEMENT - A. Accomplish longitudinal floating with a longitudinal float not less than 10 feet (3000 mm) long and 6 inches (150 mm) wide, properly stiffened to prevent flexing and warping. Operate the float from foot bridges in a sawing motion parallel to the direction in which the pavement is being laid from one side of the pavement to the other, and advancing not more than half the length of the float. - B. After the longitudinal floating is completed, but while the concrete is still plastic, eliminate minor irregularities in the pavement surfaces by means of metal floats, 5 feet (1500 mm) in length, and straightedges, 10 feet (3000 mm) in length. Make the final finish with the straightedges, which shall be used to float the entire pavement surface. - C. Test the surface for trueness with a 10 foot (3000 mm) straightedge held in successive positions parallel and at right angles to the direction in which the pavement is being laid and the entire area covered as necessary to detect variations. Advance the straightedge along the pavement in successive stages of not more than one half the length of the straightedge. Correct all irregularities and refinish the surface. - D. The finished surface of the pavement shall not vary more than 1/4 inch (6 mm) in both longitudinal and transverse directions when tested with a 10 foot (3000 mm) straightedge. - E. The thickness of the pavement shall not vary more than 1/4 inch (6 mm). - F. When most of the water glaze or sheen has disappeared and before the concrete becomes nonplastic, give the surface of the pavement a broomed finish with an approved fiber broom not less than 18 inches (450 mm) wide. Pull the broom gently over the surface of the pavement from edge to edge. Brooming shall be transverse to the line of traffic and so executed that the corrugations thus produced will be uniform in character and width, and not more than 1/8 inch (3 mm) in depth. Carefully finish the edge of the pavement along forms and at the joints with an edging tool. The brooming shall eliminate the flat surface left by the surface face of the edger. - G. The finish surfaces of new and existing abutting pavements shall be flush and in alignment at their juncture. # 3.13 CONCRETE FINISHING EQUIPMENT PADS - A. After the surface has been struck off and screeded to the proper elevation, provide a smooth dense float finish, free from depressions or irregularities. - B. Carefully finish all slab edges with an edger having a radius as shown in the Drawings. - C. After removing the forms, rub the faces of the pad with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. The finish surface of the pad shall not vary more than 1/8 inch (3 mm) when tested with a 10 foot (3000 mm) straightedge. - D. Correct irregularities exceeding the above. See Article 3.6, Paragraph H, above. ### 3.14 JOINTS - GENERAL - A. Place joints, where shown on the Shop Drawings and Drawings, conforming to the details as shown, and perpendicular to the finished grade of the concrete surface. - B. Joints shall be straight and continuous from edge to edge of the pavement. ### 3.15 CONTRACTION JOINTS - A. Cut joints to depth as shown with a grooving tool or jointer of a radius as shown or by sawing with a blade producing the required width and depth. - B. Construct joints in curbs and gutters by inserting 1/8 inch (3 mm) steel plates conforming to the cross sections of the curb and gutter. - C. Plates shall remain in place until concrete has set sufficiently to hold its shape and shall then be removed. - D. Finish edges of all joints with an edging tool having the radius as shown. - E. Score pedestrian pavement with a standard grooving tool or jointer. # 3.16 EXPANSION JOINTS - A. Use a preformed expansion joint filler material of the thickness as shown to form expansion joints. - B. Material shall extend the full depth of concrete, cut and shaped to the cross section as shown, except
that top edges of joint filler shall be below the finished concrete surface where shown to allow for sealing. - C. Anchor with approved devices to prevent displacing during placing and finishing operations. - D. Round the edges of joints with an edging tool. - E. Form expansion joints as follows: - 1. Without dowels, about structures and features that project through, into, or against any site work concrete construction. - 2. Using joint filler of the type, thickness, and width as shown. - 3. Installed in such a manner as to form a complete, uniform separation between the structure and the site work concrete item. ### 3.17 CONSTRUCTION JOINTS - A. Locate longitudinal and transverse construction joints between slabs of vehicular pavement to match the existing joint pattern and spacing of the surrounding pavement. - B. Place transverse construction joints of the type shown, where indicated and whenever the placing of concrete is suspended for more than 30 minutes. - C. Use a butt-type joint with dowels in equipment pads if the joint occurs at the location of a planned joint. ### 3.18 FORM REMOVAL - A. Forms shall remain in place at least 12 hours after the concrete has been placed. Remove forms without injuring the concrete. - B. Do not use bars or heavy tools against the concrete in removing the forms. Promptly repair any concrete found defective after form removal. ### 3.20 CURING OF CONCRETE - A. Cure concrete by one of the following methods appropriate to the weather conditions and local construction practices, against loss of moisture, and rapid temperature changes for at least seven days from the beginning of the curing operation. Protect unhardened concrete from rain and flowing water. All equipment needed for adequate curing and protection of the concrete shall be on hand and ready to install before actual concrete placement begins. Provide protection as necessary to prevent cracking of the pavement due to temperature changes during the curing period. If any selected method of curing does not afford the proper curing and protection against concrete cracking, remove and replace the damaged pavement and employ another method of curing as directed by the COR. - B. Burlap Mat: Provide a minimum of two layers kept saturated with water for the curing period. Mats shall overlap each other at least 150 mm (6 inches). - C. Impervious Sheeting: Use waterproof paper, polyethylene-coated burlap, or polyethylene sheeting. Polyethylene shall be at least 4 mils (0.1 mm) in thickness. Wet the entire exposed concrete surface with a fine spray of water and then cover with the sheeting material. Sheets shall overlap each other at least 12 inches (300 mm). Securely anchor sheeting. # D. Liquid Membrane Curing: - 1. Apply pigmented membrane-forming curing compound in two coats at right angles to each other at a rate of 200 square feet per gallon (5 m2/L) for both coats. - 2. Do not allow the concrete to dry before the application of the membrane. - 3. Cure joints designated to be sealed by inserting moistened paper or fiber rope or covering with waterproof paper prior to application of the curing compound, in a manner to prevent the curing compound entering the joint. - 4. Immediately re-spray any area covered with curing compound and damaged during the curing period. ### 3.21 CLEANING - A. After completion of the curing period: - 1. Remove the curing material (other than liquid membrane). - 2. Sweep the concrete clean. - 3. After removal of all foreign matter from the joints, seal joints as specified. - 4. Clean the entire concrete of all debris and construction equipment as soon as curing and sealing of joints has been completed. # 3.22 PROTECTION The contractor shall protect the concrete against all damage prior to final acceptance by the Government. Remove concrete containing excessive cracking, fractures, spalling, or other defects and reconstruct the entire section between regularly scheduled joints, when directed by the COR, and at no additional cost to the Government. Exclude traffic from vehicular pavement until the concrete is at least seven days old, or for a longer period of time if so directed by the COR. # 3.23 FINAL CLEAN-UP Remove all debris, rubbish and excess material from the Station. - - - E N D - - - THIS PAGE WAS INTENTIONALLY LEFT BLANK # SECTION 32 12 16 ASPHALT PAVING # PART 1 - GENERAL #### 1.1 DESCRIPTION This work shall cover the composition, mixing, construction upon the prepared subgrade, and the protection of hot asphalt concrete pavement. The hot asphalt concrete pavement shall consist of an aggregate or asphalt base course and asphalt surface course constructed in conformity with the lines, grades, thickness, and cross sections as shown. Each course shall be constructed to the depth, section, or elevation required by the drawings and shall be rolled, finished, and approved before the placement of the next course. ### 1.2 RELATED WORK - A. Laboratory and field testing requirements: Section 01 45 29, TESTING LABORATORY SERVICES. - B. Subgrade Preparation: Paragraph 3.3 and Section 31 20 00, EARTH MOVING. # 1.3 INSPECTION OF PLANT AND EQUIPMENT The COR shall have access at all times to all parts of the material producing plants for checking the mixing operations and materials and the adequacy of the equipment in use. # 1.4 ALIGNMENT AND GRADE CONTROL The Contractor's Registered Professional Land Surveyor shall establish and control the pavement (aggregate or asphalt base course and asphalt surface course) alignments, grades, elevations, and cross sections as shown on the Drawings. # 1.5 SUBMITTALS - A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following: - B. Data and Test Reports: - Aggregate Base Course: Sources, gradation, liquid limit, plasticity index, percentage of wear, and other tests required by the Colorado Department of Transportation Standard Specifications for Road and Bridge Construction for Class 6 aggregate base course. - 2. Asphalt Base/Surface Course: Aggregate source, gradation, soundness loss, percentage of wear, and other tests required by Colorado Department of Transportation Standard Specifications for Road and Bridge Construction for Grading SX Hot Mix Asphalt. - 3. Job-mix formula. - C. Certifications: - Asphalt prime and tack coat material certificate of conformance to Colorado Department of Transportation Standard Specifications for Road and Bridge Construction requirements. - Asphalt cement certificate of conformance to Colorado Department of Transportation Standard Specifications for Road and Bridge Construction requirements. - 3. Job-mix certification Submit plant mix certification that mix equals or exceeds the Colorado Department of Transportation Standard Specifications for Road and Bridge Construction. - D. One copy of Colorado Department of Transportation Standard Specifications for Road and Bridge Construction. - E. Provide MSDS (Material Safety Data Sheets) for all chemicals used on ground. ### PART 2 - PRODUCTS ### 2.1 GENERAL A. Aggregate base and asphalt base/surface course materials shall conform to the requirements of the following and other appropriate sections of the latest version of the Colorado Department of Transportation Standard Specifications for Road and Bridge Construction, including amendments, addenda and errata. Where the term "Engineer" or "Commission" is referenced in the Colorado Department of Transportation Standard Specifications for Road and Bridge Construction, it shall mean the VA COR or VA Contracting Officer. # 2.2 AGGREGATES - A. Provide aggregates consisting of crushed stone, gravel, sand, or other sound, durable mineral materials processed and blended, and naturally combined. - B. Subbase aggregate (where required) maximum size: 38mm(1-1/2"). - C. Base aggregate maximum size (see Colorado Department of Transportation Standard Specifications for Road and Bridge Construction requirements) - D. Asphaltic base course: - 1. Maximum particle size not to exceed 25.4mm (1"). - 2. Where conflicts arise between this specification and the requirements in the latest version of the Colorado Department of Transportation Standard Specifications for Road and Bridge Construction, the Colorado Department of Transportation Standard Specifications for Road and Bridge Construction shall control. - E. Aggregates for asphaltic concrete paving: Provide a mixture of sand, mineral aggregate, and liquid asphalt mixed in such proportions that the percentage by weight will be within: | Sieve Sizes | Percentage Passing | |--------------------|--------------------| | 19mm(3/4") | 100 | | 9.5mm(3/8") | 67 to 85 | | 6.4mm(1/4") | 50 to 65 | | 2.4mm(No. 8 mesh) | 37 to 50 | | 600µm(No. 30 mesh) | 15 to 25 | | 75µm(No. 200 mesh) | 3 to 8 | plus 50/60 penetration liquid asphalt at 5 percent to 6-1/2 percent of the combined dry aggregates. ### 2.3 ASPHALTS A. Comply with provisions of Colorado Department of Transportation Standard Specifications for Road and Bridge Construction: 1. Asphalt Binder: PG 58-34 2. Prime coat: Emulsified Asphalt Prime Coat (Table 702-3) 3. Tack coat: Uniformly emulsified, grade SS-1H ### 2.4 SEALER - A. Provide a sealer consisting of suitable fibrated chemical type asphalt base binders and fillers having a container consistency suitable for troweling after thorough stirring, and containing no clay or other deleterious substance. - B. Where conflicts arise between this specification and the requirements in the latest version of the State Highway Specifications, the State Specifications shall control. ### PART 3 - EXECUTION # 3.1 GENERAL The Asphalt Concrete Paving equipment, weather limitations, job-mix formula, mixing, construction methods, compaction, finishing, tolerance, and protection shall conform to the requirements of the appropriate sections of the State Highway Specifications for the type of material specified. # 3.2 MIXING ASPHALTIC CONCRETE MATERIALS - A. Provide hot
plant-mixed asphaltic concrete paving materials. - 1. Temperature leaving the plant: 143 degrees C(290 degrees F) minimum, 160 degrees C(320 degrees F) maximum. - 2. Temperature at time of placing: 138 degrees C(280 degrees F) minimum. ### 3.3 SUBGRADE A. Shape to line and grade and compact with self-propelled rollers. - B. All depressions that develop under rolling shall be filled with acceptable material and the area re-rolled. - C. Soft areas shall be removed and filled with acceptable materials and the area re-rolled. - D. Should the subgrade become rutted or displaced prior to the placing of the subbase, it shall be reworked to bring to line and grade. - E. Proof-roll the subgrade with maximum 45 tonne (50 ton) gross weight dump truck as directed by VA Contracting Officer's Representative (COR) or VA Contracting Officer. If pumping, pushing, or other movement is observed, rework the area to provide a stable and compacted subgrade. ### 3.4 BASE COURSES - A. Subbase (when required) - 1. Spread and compact to the thickness shown on the drawings. - 2. Rolling shall begin at the sides and continue toward the center and shall continue until there is no movement ahead of the roller. - 3. After completion of the subbase rolling there shall be no hauling over the subbase other than the delivery of material for the top course. # B. Base - 1. Spread and compact to the thickness shown on the drawings. - 2. Rolling shall begin at the sides and continue toward the center and shall continue until there is no movement ahead of the roller. - 3. After completion of the base rolling there shall be no hauling over the base other than the delivery of material for the top course. - C. Thickness tolerance: Provide the compacted thicknesses shown on the Drawings within a tolerance of minus $0.0 \text{mm} \ (0.0 \text{"})$ to plus $12.7 \text{mm} \ (0.5 \text{"})$. - D. Smoothness tolerance: Provide the lines and grades shown on the Drawings within a tolerance of 5mm in 3m (3/16 inch in ten feet). - E. Moisture content: Use only the amount of moisture needed to achieve the specified compaction. # 3.5 PLACEMENT OF ASPHALTIC CONCRETE PAVING - A. Remove all loose materials from the compacted base. - B. Apply the specified prime coat, and tack coat where required, and allow to dry in accordance with the manufacturer's recommendations as approved by the Architect or Engineer. - C. Receipt of asphaltic concrete materials: - 1. Do not accept material unless it is covered with a tarpaulin until unloaded, and unless the material has a temperature of not less than 130 degrees C(280 degrees F). 2. Do not commence placement of asphaltic concrete materials when the atmospheric temperature is below 10 degrees C (50 degrees F), not during fog, rain, or other unsuitable conditions. # D. Spreading: - 1. Spread material in a manner that requires the least handling. - 2. Where thickness of finished paving will be 76mm (3") or less, spread in one layer. ### E. Rolling: - 1. After the material has been spread to the proper depth, roll until the surface is hard, smooth, unyielding, and true to the thickness and elevations shown own the drawings. - 2. Roll in at least two directions until no roller marks are visible. - 3. Finished paving smoothness tolerance: - a. No depressions which will retain standing water. - b. No deviation greater than 3mm in 1.8m (1/8" in six feet). ### 3.6 APPLICATION OF SEAL COAT - A. Prepare the surfaces, mix the seal coat material, and apply in accordance with the manufacturer's recommendations as approved by the Architect or Engineer. - B. Apply one coat of the specified sealer. - C. Achieve a finished surface seal which, when dry and thoroughly set, is smooth, tough, resilient, of uniform black color, and free from coarse textured areas, lap marks, ridges, and other surface irregularities. ### 3.7 PROTECTION Protect the asphaltic concrete paved areas from traffic until the sealer is set and cured and does not pick up under foot or wheeled traffic. ### 3.8 FINAL CLEAN-UP Remove all debris, rubbish, and excess material from the work area. - - - E N D - - - THIS PAGE WAS INTENTIONALLY LEFT BLANK # **SECTION 32 90 00** ### PLANTING #### PART 1 - GENERAL ### 1.1 DESCRIPTION A. The work in this section consists of furnishing and installing plant, soils, edging turf, grasses and landscape materials required as specified in locations shown. ### 1.2 RELATED WORK - A. Topsoil Testing: Section 01 45 29, TESTING LABORATORY SERVICES. - B. Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS. - C. Stripping Topsoil, Stock Piling and Topsoil Materials: Section 31 20 00, EARTH MOVING. - D. Section 32 84 00, PLANTING IRRIGATION. #### 1.3 DEFINITIONS - A. Backfill: The earth used to replace earth in an excavation. - B. Finish Grade: Elevation of finished surface of planting soil. - C. Manufactured Topsoil: Soil produced off-site by homogeneously blending mineral soils or sand with stabilized organic soil amendments to produce topsoil or planting soil. - D. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a pest. This includes insecticides, miticides, herbicides, fungicides, rodenticides, and molluscicides. It also includes substances or mixtures intended for use as a plant regulator, defoliant, or desiccant. - E. Planting Soil: Standardized topsoil; existing, native surface topsoil; existing, in-place surface soil; imported topsoil; or manufactured topsoil that is modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth. - F. Plant Material: These terms refer to vegetation in general, including trees, shrubs, vines, ground covers, turf and grasses, ornamental grasses, bulbs, corms, tubers, or herbaceous vegetation. - G. Subgrade: Surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed. - H. Subsoil: All soil beneath the topsoil layer of the soil profile, and typified by the lack of organic matter and soil organisms. # 1.4 DELIVERY, STORAGE AND HANDLING - A. Notify the Contracting Officer's Representative of the delivery schedule in advance so the plant material may be inspected upon arrival at the job site. Remove unacceptable plant and landscape materials from the job site immediately. - B. Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and indication of conformance with state and federal laws, as applicable. Keep seed and other packaged materials in dry storage away from contaminants # C. Bulk Materials: - Do not dump or store bulk materials near structures, utilities, walkways and pavements, or on existing turf areas or plants. Keep bulk materials in dry storage away from contaminants. - 2. Provide erosion control measures to prevent erosion or displacement of bulk materials, discharge of soil-bearing water runoff, and airborne dust reaching adjacent properties, water conveyance systems, or walkways. - 3. Accompany each delivery of bulk fertilizers, lime and soil amendments with appropriate certificates. - D. Store bulbs, corms, and tubers in a dry place at 60 to 65 deg F (16 to 18 deg C) until planting. - E. Deliver plants after preparations for planting have been completed, and install immediately. If planting is delayed more than 6 hours after delivery, set plants and trees in their appropriate aspect (sun, filtered sun, or shade), protect from weather and mechanical damage, and keep roots moist. - Water root systems of plants stored on-site deeply and thoroughly with a fine-mist spray. Water as often as necessary to maintain root systems in a moist, but not overly-wet, condition. - F. Harvest, deliver, store, and handle sod according to requirements in TPI's "Guideline Specifications to Turfgrass Sodding". Deliver sod in time for planting within 24 hours of harvesting. Protect sod from breakage, seed contamination and drying. - G. All pesticides and herbicides shall be properly labeled and registered with the U.S. Department of Agriculture. Deliver materials in original, unopened containers showing, certified analysis, name and address of manufacturer, product label, manufacturer's application instructions specific to the project and indication of conformance with state and federal laws, as applicable. ### 1.5 PROJECT CONDITIONS - A. Verify actual grade elevations, service and utility locations, irrigation system components, and dimensions of plantings and construction contiguous with new plantings by field measurements before proceeding with planting work. - B. Coordinate planting periods with maintenance periods to provide required maintenance from date of Substantial Completion. Plant during one of the following periods: - 1. April 15 to July 15 - 2. September 1 to November 1 - C. Proceed with planting only when existing and forecasted weather conditions permit planting to be performed when beneficial and optimum results may be obtained. Apply products during favorable weather conditions according to manufacturer's written instructions and warranty requirements. ### 1.6 QUALITY ASSURANCE: - A. Products Criteria: - 1. When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer. - 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment. - B. Include an independent or university laboratory, recognized by the State Department of Agriculture, with the experience and capability to conduct the testing indicated and that specializes in types of tests to be performed. - C. For each unamended soil type, furnish soil analysis and a written report by a qualified soil-testing
laboratory stating percentages of organic matter; gradation of sand, silt, and clay content; cation exchange capacity; sodium absorption ratio;—deleterious material; pH; and mineral and plant-nutrient content of the soil. - 1. Testing methods and written recommendations shall comply with USDA's Handbook No. 60, "Diagnosis and Improvement of Saline and Alkali Soils". - 2. The soil-testing laboratory shall oversee soil sampling; with depth, location, and number of samples to be taken per instructions from Contracting Officer's Representative. A minimum of 3 representative samples shall be taken from varied locations for each soil to be used or amended for planting purposes. - 3. Report suitability of tested soil for plant growth. - a. Based upon the test results, state recommendations for soil treatments and soil amendments to be incorporated. State recommendations in weight per 1000 sq. ft. (92.9 sq. m) or volume per cu. yd (0.76 cu. m) for nitrogen, phosphorus, and potash nutrients and soil amendments to be added to produce satisfactory planting soil suitable for healthy, viable plants. - b. Report presence of problem salts, minerals, or heavy metals, including aluminum, arsenic, barium, cadmium, chromium, cobalt, lead, lithium, and vanadium. If such problem materials are present, provide additional recommendations for corrective action. - D. Provide quality, size, genus, species, variety and sources of plants indicated, complying with applicable requirements in ANSI Z60.1. - E. Contracting Officer's Representative may observe plant material either at place of growth or at site before planting for compliance with requirements for genus, species, variety, cultivar, size, and quality. Contracting Officer's Representative retains right to observe trees and shrubs further for size and condition of balls and root systems, pests, disease symptoms, injuries, and latent defects and to reject unsatisfactory or defective material at any time during progress of work. Remove rejected trees or shrubs immediately from Project site. - 1. Notify Contracting Officer's Representative of plant material sources seven days in advance of delivery to site. - F. Include product label and manufacturer's literature and data for pesticides and herbicides. - G. Conduct a pre-installation conference at Project site. ### 1.7 SUBMITTALS A. Submit product data for each type of product indicated, including soils: - 1. Include quantities, sizes, quality, and sources for plant materials. - 2. Include EPA approved product label, MSDS (Material Safety Data Sheet) and manufacturer's application instructions specific to the Project. - B. Submit samples and manufacturer's literature for each of the following for approval before work is started. - 1. Organic and Compost Mulch: 1-pint (0.5-liter) volume of each organic and compost mulch required; in sealed plastic bags labeled with composition of materials by percentage of weight and source of mulch. Each Sample shall be typical of the lot of material to be furnished; provide an accurate representation of color, texture, and organic makeup. - 2. Rock Mulch: 2 lb (1.0 kg) of each mineral mulch required, in sealed plastic bags labeled with source of mulch. Sample shall be typical of the lot of material to be delivered and installed on the site; provide an accurate indication of color, texture, and makeup of the material. - a. Weed Control Barrier: 12 by 12 inches (300 by 300 mm). - 3. Submit edging materials and accessories in manufacturer's standard size, to verify color selected. - 4. Erosion Control Materials: 12 by 12 inches (300 by 300 mm). - 5. Root Barrier: Width of panel by 12 inches (300 mm). - 6. Landscape Membranes: 12 by 12 inches (300 by 300 mm). - C. Qualification data for qualified landscape Installer. Include list of similar projects completed by Installer demonstrating Installer's capabilities and experience. Include project names, addresses, and year completed, and include names and addresses of owners' contact persons. - D. Prior to delivery, provide notarized certificates attesting that each type of manufactured product, from the manufacturer, meet the requirements specified and shall be submitted to the Contracting Officer's Representative for approval: - 1. Plant Materials (Department of Agriculture certification by State Nursery Inspector declaring material to be free from insects and disease). - 2. Seed and Turf Materials notarized certificate of product analysis. - 3. Manufacturer's certified analysis of standard products. - 4. Analysis of other materials by a recognized laboratory made according to methods established by the Association of Official Analytical Chemists, where applicable. - E. Material Test Reports: For standardized ASTM D5268 topsoil, existing native surface topsoil, existing in-place surface soil, and imported or manufactured topsoil. - F. Maintenance Instructions: Recommended procedures to be established by Owner for maintenance of plants during a calendar year. Submit before start of required maintenance periods. # 1.8 PLANT AND TURF ESTABLISHMENT PERIOD A. The establishment period for plants and turf shall begin immediately after installation, with the approval of the Contracting Officer's Representative, and continue until the date that the Government accepts the project or phase for beneficial use and occupancy. During the Establishment Period the Contractor shall maintain the plants and turf as required in Part 3. ### 1.9 PLANT AND TURF MAINTENANCE SERVICE - A. Provide initial maintenance service for trees, shrubs, ground cover and other plants by skilled employees of landscape Installer. Begin maintenance immediately after plants are installed and continue until plantings are acceptably healthy and well established but for not less than maintenance period below. - Maintenance Period: 6 months from date of Substantial Completion. - B. Obtain continuing maintenance proposal from Installer to Owner, in the form of a standard yearly (or other period) maintenance agreement, starting on date initial maintenance service is concluded. State services, obligations, conditions, and terms for agreement period and for future renewal options. ### 1.10 APPLICABLE PUBLICATIONS - A. The publications listed below, form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only. - B. American National Standards Institute (ANSI): - Z60.1-04.....Nursery Stock - C. Association of Official Seed Analysts (AOSA): Rules for Testing Seed. - D. American Society For Testing And Materials (ASTM): | B221-08 | Aluminum and Aluminum-Alloy Extruded Bars, | |---|--| | | Rods, Wire, Profiles, and Tubes | | | | | C33/C33M-11 | Concrete Aggregates | | | | | C136-06 | Sieve Analysis of Fine and Coarse Aggregates | | | | | C516-08 | Vermiculite Loose Fill Thermal Insulation | | | | | C549-06 | Perlite Loose Fill Insulation | | | | | C602-07Agricultural Liming Materials | | | C002-07Agricultural billing Materials | | | | | | D977-05Emulsified Asphalt (AASTHO M140) | | | | | | D5268-07 | Topsoil Used for Landscaping Purposes | - E. Hortus Third: A Concise Dictionary of Plants Cultivated in the United States and Canada. - F. Turfgrass Producers International (TPI): Guideline Specifications to Turfgrass Sodding. - G. United States Department of Agriculture (USDA): Handbook No. 60 Diagnosis and Improvement of Saline and Alkali Soils; Federal Seed Act Regulations. ### 1.11 WARRANTY D001 00 - A. The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of one year from final acceptance, unless noted otherwise below. Further, the Contractor will provide all manufacturer's and supplier's written guarantees and warranties covering materials and equipment furnished under this Contract. - 1. Plant and Turf Warranty Periods will begin from the date of Government acceptance of the project or phase for beneficial use and occupancy. - a. Ground Covers, Biennials, Perennials, Turf, and Other Plants: 12 months. - 2. The Contractor shall have completed, located, and installed all plants and turf according to the plans and specifications. All plants and turf are expected to be living and in a healthy condition at the time of final inspection. - 3. The Contractor will replace any dead plant material and any areas void of turf immediately, unless required to plant in the succeeding planting season. Provide extended warranty for - period equal to original warranty period for replacement plant materials. Replacement plant and turf warranty will begin on the day the work is completed. - 4. Replacement of relocated plants, that the Contractor did not supply, is not required unless plant failure is due to improper handling and care during transplanting. Loss through Contractor negligence requires replacement in plant type and size. - 5. The Government will reinspect all plants and turf at the end of the Warranty Period. The Contractor will replace any dead, missing, or defective plant material and turf immediately. The Warranty Period will end on the date of this inspection provided the Contractor has complied with the warranty work required by this specification. The Contractor shall also comply with the following requirements: - a. Replace plants that are more than 25 percent dead, missing or defective plant material prior to final inspection. - b. A limit of one replacement of each plant will be required except for losses or replacements due to failure to comply with requirements. - c. Mulch and weed plant beds and saucers. Just prior to final inspection, treat these areas to a second application of approved pre-emergent herbicide. - d. Complete remedial measures directed by the Contracting Officer's Representative to ensure plant and turf survival. - e. Repair damage caused
while making plant or turf replacements. - B. Installer agrees to repair or replace plantings and accessories that fail in materials, workmanship, or growth within specified warranty period. - 1. Failures include, but are not limited to, the following: - a. Death and unsatisfactory growth, except for defects resulting from abuse, lack of adequate maintenance, or neglect by Owner, or incidents that are beyond Contractor's control. - b. Structural failures including plantings falling or blowing over. - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering. ### PART 2 - PRODUCTS ### 2.1 PLANT MATERIAL A. Plant and turf materials: ANSI Z60.1; will conform to the varieties specified and be true to botanical name as listed in Hortus Third; nursery-grown plants and turf material true to genus, species, variety, cultivar, stem form, shearing, and other features indicated on Drawings; healthy, normal and unbroken root systems developed by transplanting or root pruning; well-shaped, fully branched, healthy, vigorous stock, densely foliated when in leaf; free of disease, pests, eggs, larvae, and defects such as knots, sun scald, windburn, injuries, abrasions, and disfigurement. ### 2.2 INORGANIC SOIL AMENDMENTS - A. Sulfur: Granular, biodegradable, and containing a minimum of 90 percent sulfur, with a minimum of 99 percent passing through No. 6 (3.35 mm) sieve and a maximum of 10 percent passing through No. 40 (0.425 mm) sieve. - B. Iron Sulfate: Granulated ferrous sulfate containing a minimum of 20 percent iron and 10 percent sulfur. - C. Aluminum Sulfate: Commercial grade, unadulterated. - D. Perlite: ASTM C549, horticultural perlite, soil amendment grade. - E. Agricultural Gypsum: Minimum 90 percent calcium sulfate, finely ground with 90 percent passing through No. 50 (0.30 mm) sieve. - F. Coarse Sand shall be concrete sand, ASTM C33 Fine Aggregate, clean, sharp free of limestone, shale and slate particles, and toxic materials. - G. Vermiculite: ASTM C516, horticultural grade and free of any toxic materials. - H. Diatomaceous Earth: Calcined, 90 percent silica, with approximately 140 percent water absorption capacity by weight. - I. Zeolites: Mineral clinoptilolite with at least 60 percent water absorption by weight. # 2.3 ORGANIC SOIL AMENDMENTS A. Organic matter: Commercially prepared compost. Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through 1 inch (25 mm) sieve; soluble salt content of 5 to 10 decisiemens/m; not exceeding 0.5 percent inert contaminants and free of substances toxic to plantings; and as follows: - 1. Organic Matter Content: 50 to 60 percent of dry weight. - 2. Feedstock: Agricultural, food, or industrial residuals; biosolids; yard trimmings; or source-separated or compostable mixed solid waste. - B. Peat: A natural product of sphagnum moss peat, peat moss, reed sedge peat or peat humus derived from a fresh-water site, except as otherwise specified. Peat shall be shredded and granulated to pass through a 1/2 inch (13 mm) mesh screen with a pH range of 3.4 to 4.8 and conditioned in storage piles for at least 6 months after excavation. - C. Wood derivatives: Decomposed, nitrogen-treated sawdust, ground bark, or wood waste; of uniform texture and free of chips, stones, sticks, soil, or toxic materials. - 1. In lieu of decomposed wood derivatives, mix partially decomposed wood derivatives with ammonium nitrate at a minimum rate of 0.15 lb/cu. ft. (2.4 kg/cu. m) of loose sawdust or ground bark, or with ammonium sulfate at a minimum rate of 0.25 lb/cu. ft. (4 kg/cu. m) of loose sawdust or ground bark. - D. Manure: Well-rotted, unleached, stable or cattle manure containing not more than 25 percent by volume of straw, sawdust, or other bedding materials; free of toxic substances, stones, sticks, soil, weed seed, debris, and material harmful to plant growth. # 2.4 PLANT AND TURF FERTILIZERS - A. Soil Test: Evaluate existing soil conditions and requirements prior to fertilizer selection and application to minimize the use of all fertilizers and chemical products. Obtain approval of Contracting Officer's Representative for allowable products, product alternatives, scheduling and application procedures. Evaluate existing weather and site conditions prior to application. Apply products during favorable weather and site conditions according to manufacturer's written instructions and warranty requirements. Fertilizers to be registered and approved by EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer applicable to specific areas as required for Project conditions and application. Provide commercial grade plant and turf fertilizers, free flowing, uniform in composition and conforms to applicable state and federal regulations. - B. Commercial Fertilizer: Commercial-grade complete fertilizer of neutral character, consisting of slow-release nitrogen, 50 percent derived from natural organic sources of urea formaldehyde, phosphorous, and potassium in the following composition: - Composition shall be nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soiltesting laboratory. - C. Slow-Release Fertilizer: Granular or pellet fertilizer consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium in the following composition: - Composition shall be nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soiltesting laboratory. ### 2.5 PLANTING SOILS - A. Planting Soil: ASTM D5268 topsoil, with pH range of 5.5 to 7, a minimum of 6 percent organic material content; free of stones 1 inch (25 mm) or larger in any dimension and other extraneous materials harmful to plant growth. Mix ASTM D5268 topsoil with the following soil amendments and fertilizers as recommended by the soils analysis. - B. Existing Planting Soil: Existing, native surface topsoil formed under natural conditions retained during excavation process and stockpiled onsite. Verify suitability of native surface topsoil to produce viable planting soil. Clean soil of roots, plants, sod, stones, clay lumps, and other extraneous materials harmful to plant growth. - 1. Supplement with planting soil when quantities are insufficient. - 2. Mix existing, native surface topsoil with the following soil amendments and fertilizers as recommended by the soils analysis. - C. Imported Planting Soil: Imported topsoil or manufactured topsoil from off-site sources can be used if sufficient topsoil is not available on site to meet the depth as specified herein. The Contractor shall furnish imported topsoil. At least 10 days prior to topsoil delivery, notify the Contracting Officer's Representative of the source(s) from which topsoil is to be furnished. Obtain imported topsoil displaced from naturally well-drained construction or mining sites where topsoil occurs at least 4 inches (100 mm) deep; do not obtain from agricultural land, bogs, or marshes. ### 2.6 BIOSTIMULANTS A. Biostimulants: Contain soil conditioners, VAM fungi, and endomycorrhizal and ectomycorrhizal fungi spores and soil bacteria appropriate for existing soil conditions. ### 2.7 LANDSCAPE MEMBRANES - A. Nonwoven Geotextile Filter Fabric: Polypropylene or polyester fabric, 3 oz./sq. yd. (101 g/sq. m) minimum, composed of fibers formed into a stable network so that fibers retain their relative position. Fabric shall be inert to biological degradation and resist naturally-encountered chemicals, alkalis, and acids. - B. Composite Fabric shall be woven, needle-punched polypropylene substrate bonded to a nonwoven polypropylene fabric, 4.8 oz./sq. yd. (162 g/sq. m). ### 2.8 MULCH - A. Rock Mulch: Hard, durable stone, washed free of loam, sand, clay, and other foreign substances, of following type, size range, and color: - 1. Type: Crushed Granite stone or gravel or Lava rock, to match existing mulch in disturbed areas. - 2. Size Range: 2 to 4 inches in accordance with ASTM C136. - 3. Color: To match existing mulch in disturbed areas. # 2.9 TACKIFIERS AND ADHESIVES - A. Nonasphalt tackifier: Colloidal tackifier recommended by fiber-mulch manufacturer for slurry application; nontoxic and free of plant-growth or germination inhibitors. - B. Asphalt emulsion: ASTM D977, Grade SS-1; nontoxic and free of plant-growth or germination inhibitors. # 2.10 EROSION CONTROL - A. Erosion control blankets: Biodegradable wood excelsior, straw, or coconut fiber mat enclosed in a photodegradable plastic mesh. Include manufacturer's recommended biodegradable staples, 6 inches (150 mm) long. - B. Erosion control fiber mesh: Biodegradable burlap or spun-coir mesh, a minimum of 0.92 lb/sq. yd. (0.5 kg/sq. m), with 50 to 65 percent open area. Include manufacturer's recommended biodegradable staples, 6 inches (150 mm) long. ### 2.11 EDGING - A. Steel edging: Standard commercial steel edging, rolled edge, fabricated in sections of standard lengths, with loops stamped from or welded to face of sections to receive stakes. - 1. Edging Size: 3/16 inch (4.8 mm) wide by 4 inches (100 mm) deep. - 2. Stakes: Tapered steel, a minimum of 15 inches (380 mm) long. - 3. Accessories: Standard tapered ends, corners, and splicers. - 4. Finish: Standard paint or Zinc coated. - 5. Paint color: Black. # 2.12 WATER A. Water shall not contain elements toxic to plant life. Water to be obtained from on-site source at no cost to the Contractor. ### 2.13 TURF SELECTIONS - A. Grasses for Cool Regions shall be: - 1. Bentgrasses: Redtop (Agrostis alba) & Colonial (Agrostis tenuis) - 2. Bluegrasses: Kentucky (Poa pratensis), Rough-stalked (Poa trivialis) & Canada (Poa compressa) - 3. Fescue: Red (Festuca rubra), Meadow (Festuca pratensis) & Tall (Festuca arundinacea) - 4. Ryegrasses: Perennial (Lolium perenne) # 2.14 SEED - A. Grass Seed: Fresh, clean, dry, new-crop seed complying with "AOSA, Rules for Testing Seed"
for purity and germination tolerances. Seed shall be labeled in conformance with U. S. Department of Agriculture rules and regulations under the Federal Seed Act and applicable state seed laws. Wet, moldy, or otherwise damaged seed will not be acceptable. - B. Seed Species: Not less than 95 percent germination and not more than 0.5 percent weed seed. ### 2,15 SOD A. Sod: Certified Number 1 Quality/Premium, including limitations on thatch, weeds, diseases, nematodes, and insects, complying with "Specifications for Turfgrass Sod Materials" in TPI's "Guideline Specifications to Turfgrass Sodding". Furnish viable sod of uniform density, color, and texture, strongly rooted, and capable of vigorous growth and development when planted. B. Sod Species: Grass species as follows, with not less than 95 percent germination, and not more than 0.5 percent weed seed: ### 2.16 PESTICIDES - A. Consider IPM (Integrated Pest Management) practices to minimize the use of all pesticides and chemical products. Obtain approval of Chief Engineer for allowable products, product alternatives, scheduling and application procedures. Evaluate existing weather and site conditions prior to application. Apply products during favorable weather and site conditions according to manufacturer's written instructions and warranty requirements. Pesticides to be registered and approved by EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer for each specific problem and as required for Project conditions and application. Do not use restricted pesticides unless authorized in writing by authorities having jurisdiction. - B. Pre-Emergent Herbicide (Selective and Non-Selective): Effective for controlling the germination or growth of weeds within planted areas at the soil level directly below the mulch layer. - C. Post-Emergent Herbicide (Selective and Non-Selective): Effective for controlling weed growth that has already germinated. ### PART 3 - EXECUTION # 3.1 EXAMINATION - A. Examine areas to receive plants for compliance with requirements and conditions affecting installation and performance. - 1. Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in soil within a planting area. - 2. Do not mix or place soils and soil amendments in frozen, wet, or muddy conditions. - 3. Suspend soil spreading, grading, and tilling operations during periods of excessive soil moisture until the moisture content reaches acceptable levels to attain the required results. - 4. Uniformly moisten excessively dry soil that is not workable and which is too dusty. - 5. Special conditions may exist that warrant a variance in the specified planting dates or conditions. Submit a written - request to the Contracting Officer's Representative stating the special conditions and proposal variance. - B. Proceed with installation only after unsatisfactory conditions have been corrected. - C. If contamination by foreign or deleterious material or liquid is present in soil within a planting area, remove the soil and contamination as directed by Contracting Officer's Representative and replace with new planting soil. ### 3.2 PREPARATION - A. Protect structures, utilities, sidewalks, pavements, and other facilities and turf areas and existing plants from damage caused by planting operations. - B. Install erosion control measures to prevent erosion or displacement of soils and discharge of soil bearing water runoff or airborne dust to adjacent properties and walkways. ### 3.3 PLANTING AREA ESTABLISHMENT - A. Loosen subgrade of planting areas to a minimum depth of 6 inches (150 mm). Remove stones larger than 1-1/2 inches (38 mm) in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property. - 1. Apply fertilizer as determined by soils analysis directly to subgrade before loosening. - 2. Thoroughly blend planting soil off-site before spreading or spread topsoil, apply soil amendments and fertilizer on surface, and thoroughly blend planting soil. - a. Delay mixing fertilizer with planting soil if planting will not proceed within a few days. - 3. Spread planting soil to a depth of 4 inches (100 mm), but not less than required to meet finish grades after natural settlement. Do not spread if planting soil or subgrade is frozen, muddy, or excessively wet. - a. Spread approximately one-half the thickness of planting soil over loosened subgrade. Mix thoroughly into top 4 inches (100 mm) of subgrade. Spread remainder of planting soil. - B. Finish Grading: Grade planting areas to a smooth, uniform surface plane with loose, uniformly fine texture. Roll and rake, remove ridges, and fill depressions to meet finish grades. C. Before planting, obtain Contracting Officer's Representative acceptance of finish grading; restore planting areas if eroded or otherwise disturbed after finish grading. ### 3.4 MULCH INSTALLATION - A. Install weed-control barriers before mulching according to manufacturer's written instructions. Completely cover area to be mulched, overlapping edges a minimum of 6 inches (150 mm) and secure seams with galvanized pins. - B. Mulch backfilled surfaces of planting areas and other areas indicated. Keep mulch out of plant crowns and off buildings, pavements, utility standards/pedestals, and other structures. - 1. Rock Mulch in disturbed Planting Areas: Apply 3 to 6 inch average thickness of rock mulch over whole surface of disturbed planting area, and finish level with adjacent finish grades. Do not place mulch within 3 inches (75 mm) of trunks or stems. #### 3.5 EDGING INSTALLATION A. Install steel edging where indicated according to manufacturer's written instructions. Anchor with steel stakes spaced approximately 30 inches (760 mm) apart, driven below top elevation of edging. # 3.6 PLANT MAINTENANCE - A. Maintain plantings by pruning, cultivating, watering, weeding, fertilizing, mulching, restoring plant saucers, resetting to proper grades or vertical position, and performing other operations as required to establish healthy, viable plantings. Spray or treat as required to keep trees and shrubs free of insects and disease. - B. Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace mulch materials damaged or lost in areas of subsidence. - C. Apply treatments as required to keep plant materials, planted areas, and soils free of pests and pathogens or disease. Use IPM (Integrated Pest Management) practices whenever possible to minimize the use of pesticides and reduce hazards. Treatments include physical controls such as hosing off foliage, mechanical controls such as traps, and biological control agents. ### 3.7 TURF AREA PREPARATION AND GRADING A. For newly graded subgrades loosen subgrade to a minimum depth of 6 inches (150 mm). Remove stones larger than 1-1/2 inches (38 mm) in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property. - Apply fertilizer and soil amendments directly to subgrade before loosening, at rates recommended by the soils analysis. - 2. Spread topsoil, apply soil amendments and fertilizer on surface, and thoroughly blend planting soil. - 3. Spread planting soil to a depth of 4 inches (100 mm), but not less than required to meet finish grades after light rolling and natural settlement. Do not spread if planting soil or subgrade is frozen, muddy, or excessively wet. - a. Spread approximately 1/2 the thickness of planting soil over loosened subgrade. Mix thoroughly into top 4 inches (100 mm) of subgrade. Spread remainder of planting soil. - b. Reduce elevation of planting soil to allow for soil thickness of sod. - B. Finish grade planting areas to a smooth, uniform surface plane with loose, uniformly fine texture. Grade to within plus or minus 1/2 inch (13 mm) of finish elevation. Roll and rake, remove ridges, and fill depressions to meet finish grades. Limit finish grading to areas that can be planted in the immediate future. # 3.8 PREPARATION FOR EROSION-CONTROL MATERIALS. - A. Prepare area as specified in "Turf Area Preparation and Grading" Article. - B. For erosion control mats, install planting soil in two lifts, with second lift equal to thickness of erosion control mats. Install erosion control mat and fasten with biodegradable materials as recommended by material manufacturer. - C. Fill cells of erosion control mat with planting soil and compact before planting. - D. For erosion control blanket or mesh, install from top of slope, working downward, and as recommended by material manufacturer for site conditions. Fasten with biodegradable materials as recommended by material manufacturer. - E. Moisten prepared area before planting if surface is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil. ### 3.9 SEEDING - A. Sow seed with spreader or seeding machine. Do not broadcast or drop seed when wind velocity exceeds 5 mph (8 km/h). Evenly distribute seed by sowing equal quantities in two directions at right angles to each other. - 1. Do not use wet seed or seed that is moldy or otherwise damaged. - 2. Do not seed against existing trees. Limit extent of seed to outside edge of planting saucer. - B. Sow seed at a total rate of 3 to 4 lb/1000 sq. ft. (1.4 to 1.8 kg/92.9 sq. m). - C. Rake seed lightly into top 1/8 inch (3 mm) of soil, roll lightly, and water with fine spray. - D. Protect seeded areas with slopes exceeding 1:4 with erosion-control blankets and fastened with biodegradable materials according to manufacturer's written instructions. - E. Protect seeded areas with erosion control mats where shown on Drawings; install and anchor with biodegradable materials according to manufacturer's written instructions. - F. Protect
seeded areas with slopes not exceeding 1:6 by spreading straw mulch. Spread uniformly at a minimum rate of 2 tons/acre (42 kg/92.9 sq. m) to form a continuous blanket 1-1/2 inches (38 mm) in loose thickness over seeded areas. Spread by hand, blower, or other suitable equipment. - 1. Anchor straw mulch by crimping into soil with suitable mechanical equipment. - G. Protect seeded areas from hot, dry weather or drying winds by applying peat mulch within 24 hours after completing seeding operations. Soak areas, scatter mulch uniformly to a thickness of 3/16 inch (4.8 mm), and roll surface smooth. ### 3.10 HYDROSEEDING - A. For hydroseeding, mix specified seed, fertilizer, and fiber mulch in water, using equipment specifically designed for hydroseed application. Continue mixing until uniformly blended into homogeneous slurry suitable for hydraulic application. - 1. Mix slurry with nonasphaltic fiber-mulch and tackifier at manufacturer's recommendations. - 2. Apply slurry uniformly to all areas to be seeded in a one-step process. Apply slurry at a rate so that mulch component is deposited at not less than 1500-lb/acre (15.6-kg/92.9 sq. m) dry weight, and seed component is deposited at not less than the specified seed-sowing rate. ### 3.11 SODDING - A. Lay sod within 24 hours of harvesting. Do not lay sod if dormant or if ground is frozen or muddy. - B. Lay sod to form a solid mass with tightly fitted joints. Butt ends and sides of sod; do not stretch or overlap. Stagger sod strips or pads to offset joints in adjacent courses. Avoid damage to subgrade or sod during installation. Tamp and roll lightly to ensure contact with subgrade, eliminate air pockets, and form a smooth surface. Work sifted soil or fine sand into minor cracks between pieces of sod; remove excess to avoid smothering sod and adjacent grass. - 1. Lay sod across angle of slopes exceeding 1:3. - 2. Anchor sod on slopes exceeding 1:6 with biodegradable staples spaced as recommended by sod manufacturer but not less than 2 anchors per sod strip to prevent slippage. - C. Saturate sod with fine water spray within two hours of planting. During first week after planting, water daily or more frequently until sod is established. ### 3.12 TURF RENOVATION - A. Renovate existing turf damaged by Contractor's operations, such as storage of materials or equipment and movement of vehicles. - 1. Reestablish turf where settlement or washouts occur or where minor regrading is required. - 2. Install new planting soil as required. - B. Remove sod and vegetation from diseased or unsatisfactory turf areas; do not bury in soil. - C. Remove topsoil containing foreign materials such as oil drippings, fuel spills, stones, gravel, and other construction materials resulting from Contractor's operations, and replace with new planting soil. - D. Mow, dethatch, core aerate, and rake existing turf. - E. Remove weeds before seeding. Where weeds are extensive, apply selective herbicides as required. Do not use pre-emergence herbicides. - F. Remove waste and foreign materials, including weeds, soil cores, grass, vegetation, and turf, and legally dispose of them off Owner's property. - G. Till stripped, bare, and compacted areas thoroughly to a soil depth of 6 inches (150 mm). - H. Apply soil amendments and initial fertilizers required for establishing new turf and mix thoroughly into top 4 inches (100 mm) of existing soil. Install new planting soil to fill low spots and meet finish grades. - I. Apply seed and protect with straw mulch or sod as required for new turf. - J. Water newly planted areas and keep moist until new turf is established. ### 3.13 TURF MAINTENANCE - A. Maintain and establish turf by watering, fertilizing, weeding, mowing, trimming, replanting, and performing other operations as required to establish healthy, viable turf. Roll, regrade, and replant bare or eroded areas and remulch to produce a uniformly smooth turf. Provide materials and installation the same as those used in the original installation. - Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace materials and turf damaged or lost in areas of subsidence. - 2. In areas where mulch has been disturbed by wind or maintenance operations, add new mulch and anchor as required to prevent displacement. - 3. Apply treatments as required to keep turf and soil free of pests and pathogens or disease. Use IPM (Integrated Pest Management) practices whenever possible to minimize the use of pesticides and reduce hazards. - B. Install and maintain temporary piping, hoses, and turf-watering equipment to convey water from sources and to keep turf uniformly moist to a depth of 4 inches (100 mm). - 1. Schedule watering to prevent wilting, puddling, erosion, and displacement of seed or mulch. Lay out temporary watering system to avoid walking over muddy or newly planted areas. - 2. Water turf with fine spray at a minimum rate of 1 inch (25 mm) per week unless rainfall precipitation is adequate. - C. Mow turf as soon as top growth is tall enough to cut. Repeat mowing to maintain specified height without cutting more than 1/3 of grass height. Remove no more than 1/3 of grass-leaf growth in initial or subsequent mowings. Do not delay mowing until grass blades bend over and become matted. Do not mow when grass is wet. Schedule initial and subsequent mowings to maintain the following grass height: - 1. Mow all turf to a height of 2 to 3 inches (50 to 75 mm). ### 3.14 SATISFACTORY TURF - A. Turf installations shall meet the following criteria as determined by Contracting Officer's Representative: - 1. Satisfactory Seeded Turf: At end of maintenance period, a healthy, uniform, close stand of grass has been established, free of weeds and surface irregularities, with coverage exceeding 90 percent over any 10 sq. ft. (0.92 sq. m) and bare spots not exceeding 5 by 5 inches (125 by 125 mm). - 2. Satisfactory Sodded Turf: At end of maintenance period, a healthy, well-rooted, even-colored, viable turf has been established, free of weeds, open joints, bare areas, and surface irregularities. - B. Use specified materials to reestablish turf that does not comply with requirements and continue maintenance until turf is satisfactory. ### 3.15 PESTICIDE APPLICATION - A. Apply pesticides and other chemical products and biological control agents in accordance with authorities having jurisdiction and manufacturer's written recommendations. Coordinate applications with Owner's operations and others in proximity to the Work. Notify Contracting Officer's Representative before each application is performed. - B. Pre-Emergent Herbicides (Selective and Non-Selective): Applied to tree, shrub, and ground-cover areas in accordance with manufacturer's written recommendations. Do not apply to seeded areas. - C. Post-Emergent Herbicides (Selective and Non-Selective): Applied only as necessary to treat already-germinated weeds and in accordance with manufacturer's written recommendations. ### 3.16 CLEANUP AND PROTECTION - A. During planting, keep adjacent paving and construction clean and work area in an orderly condition. - B. Protect plants from damage due to landscape operations and operations of other contractors and trades. Maintain protection during installation and maintenance periods. Treat, repair, or replace damaged plantings. - C. Promptly remove soil and debris created by turf work from paved areas. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks, or other paved areas. - D. Erect temporary fencing or barricades and warning signs, as required to protect newly planted areas from traffic. Maintain fencing and - barricades throughout initial maintenance period and remove after plantings are established. - E. After installation and before Project Completion, remove nursery tags, nursery stakes, tie tape, labels, wire, burlap, and other debris from plant material, planting areas, and Project site. - F. Remove nondegradable erosion control measures after grass establishment period. - G. Remove surplus soil and waste material including excess subsoil, unsuitable soil, trash, and debris and legally dispose of them off Owner's property. --- END --- ## **SECTION 33 08 00** ## COMMISSIONING OF SITE UTILITY SYSTEMS #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. The requirements of this Section apply to all sections of Division 33. - B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process. #### 1.2 RELATED WORK - A. Section 01 00 00 GENERAL REQUIREMENTS. - B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. - C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. ## 1.3 SUMMARY - A. This Section includes requirements for commissioning the Facility site utilities systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements. - B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members. ### 1.4 DEFINITIONS A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions. # 1.5 COMMISSIONED SYSTEMS - A. Commissioning of a system or systems specified in Division 33 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 31, is required in cooperation with the VA and the Commissioning Agent. - B. The Facility
site utilities systems commissioning will include the systems listed in Section 01 19 00 General Commissioning Requirements: ## 1.6 SUBMITTALS - A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details. - B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. ## PART 2 - PRODUCTS (NOT USED) ## PART 3 - EXECUTION #### 3.1 CONSTRUCTION INSPECTIONS A. Commissioning of Site Utility systems will require inspection of individual elements of the site utility systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 19 00 and the Commissioning plan to schedule site utility systems inspections as required to support the Commissioning Process. ## 3.2 PRE-FUNCTIONAL CHECKLISTS A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents. ## 3.3 CONTRACTORS TESTS A. Contractor tests as required by other sections of Division 33 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing. ## 3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Contracting Officer's Representative (COR). The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details. #### 3.5 TRAINING OF VA PERSONNEL A. Training of the VA operation and maintenance personnel is required in cooperation with the COR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 19 00. The instruction shall be scheduled in coordination with the VA COR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 31 Sections for additional Contractor training requirements. ----- END ----- ## **SECTION 33 10 01** ## CHILLED WATER UTILITIES #### PART 1 - GENERAL ## 1.1 DESCRIPTION A. This section specifies materials and procedures for construction of underground chilled water distribution for chilled water supply and return systems outside the building that are complete and ready for operation. This includes piping, structures, and all other incidentals. #### 1.2 RELATED WORK - A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 00, EARTH MOVING. - B. Concrete: Section 03 30 00, CAST IN-PLACE CONCRETE. - C. General plumbing: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING. - D. Submittals: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. ## 1.3 DEFINITIONS - A. Chilled water distribution system: Pipelines and appurtenances which are part of the distribution system outside the building for chilled water supply and return between the central chiller plant and campus facilities. - B. Chilled water service line: Pipeline from main line to within 5 feet outside of building. #### 1.4 ABBREVIATIONS A. PVC: Polyvinyl chloride plastic. # 1.5 DELIVERY, STORAGE AND HANDLING - A. Ensure that valves are dry and internally protected against rust and corrosion. Protect valves against damage to threaded ends and flange faces. - B. Use a sling to handle valves if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points. - C. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture. - D. Protect stored piping from moisture and dirt by elevating above grade. Protect flanges, fittings, and specialties from moisture and dirt. - E. Store plastic piping protected from direct sunlight and support to prevent sagging and bending. - F. Cleanliness of Piping and Equipment Systems: - 1. Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed. - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems. ## 1.6 COORDINATION - A. Coordinate connections to chilled water lines, both within and exterior to facilities with Medical Center staff. - B. Coordinate water service lines with building contractor. ## 1.7 QUALITY ASSURANCE: - A. Products Criteria: - 1. When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer. - 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment. - B. Materials and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least three years. Digital electronic devices, software and systems such as controls, instruments or computer work stations shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. - C. Provide certification of factory hydrostatic testing of not less than 500 psi (3.5 MPa) in accordance with AWWA C151. Piping materials shall bear the label, stamp or other markings of the specified testing agency. - D. Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements: - 1. Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications". - Comply with provisions of ASME B31 series "Code for Pressure Piping". - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current. - 4. All welds shall be stamped according to the provisions of the American Welding Society. - E. Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Contracting Officer's Representative (COR) prior to installation. ## F. Applicable codes: - 1. Plumbing Systems: IPC, International Plumbing Code. - 2. Electrical components, devices and accessories shall be listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction and marked for intended use. #### 1.8 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society of Mechanical Engineers (ASME): | B16.1-2010 | .Gray | Iron | Pipe | Flanges | and | Flanged | Fittings, | |------------|-------|------|------|---------|-----|---------
-----------| | | Class | 25, | 125, | 250 | | | | B31.....Code for Pressure Piping Standards C. American Society for Testing and Materials (ASTM): A36/A36M-08.....Carbon Structural Steel A48/A48M-08(2008)......Gray Iron Castings A536-84(2009).....Ductile Iron Castings A674-10......Polyethylene Encasement for Ductile Iron Pipe for Water or Other Liquids B61-08.....Steam or Valve Bronze Castings C858-10e1.............Underground Precast Utility Structures D1785-06......Poly (Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120 | | D2239-03 | .Polyethylene (PE) Plastic Pipe (SIDR-PR) Based on Controlled Inside Diameter | |------|--------------------------|--| | | D2464-06 | .Threaded Poly (Vinyl Chloride) PVC Pipe
Fittings, Schedule 80 | | | D2466-06 | .Poly (Vinyl Chloride) (PVC) Pipe Fittings,
Schedule 40 | | | D2467-06 | .Poly (Vinyl Chloride) (PVC) Plastic Pipe
Fittings, Schedule 80 | | | D2609-02(2008) | .Plastic Insert Fittings for Polyethylene (PE) Plastic Pipe | | | D3350-10a | .Polyethylene Plastics Pipe and Fittings
Materials | | | F714-10 | .Polyethylene (PE) Plastic Pipe (SDR-PR) Based on Outside Diameter | | D. A | American Water Works Ass | sociation (AWWA): | | | C105/A21.5-10 | .Polyethylene Encasement for Ductile Iron Pipe
Systems | | | C110-08 | .Ductile Iron and Gray-Iron Fittings | | | C111/A21.11-07 | .Rubber-Gasket Joints for Ductile Iron Pressure Pipe and Fittings | | | C115/A21.11-11 | .Flanged Ductile Iron Pipe with Ductile Iron or Gray-Iron Threaded Flanges | | | C151/A21.51-09 | .Ductile Iron Pipe, Centrifugally Cast | | | C153/A21.53-11 | .Ductile Iron Compact Fittings for Water Service | | | C504-10 | .Rubber-Seated Butterfly Valves | | | C509-09 | .Resilient-Seated Gate Valves for Water Supply
Service | | | C600-10 | .Installation of Ductile Iron Mains and Their
Appurtenances | | | C605-11 | .Underground Installation of Polyvinyl Chloride (PVC) Pressure Pipe and Fittings for Water | | | C606-11 | .Grooved and Shouldered Joints 33 10 01-4 | | C800-05Underground Service Line Valves and Fittings | |---| | C900-09Polyvinyl Chloride (PVC) Pressure Pipe and | | Fabricated Fittings, 4 In. Through 12 In. (100 | | mm Through 300 mm), for Water Transmission and | | Distribution | | C907-04Injection-Molded PVC Pressure Fittings, 4 Inch | | through 12 Inch (100 mm through 300 mm), for | | Water Distribution | | M23-2nd EdPVC Pipe, Design and Installation | | M44-2nd EdDistribution Valves: Selection, Installation, | | Field Testing and Maintenance | #### 1.9 WARRANTY A. The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of one year from final acceptance. Further, the Contractor will furnish all manufacturers' and supplier's written guarantees and warranties covering materials and equipment furnished under this Contract. #### PART 2 - PRODUCTS ## 2.1 MATERIALS A. Chilled water piping material shall consist of factory-insulated Class 200 PVC pipe. Insulation shall be urethane foam and shall include a PVC outer liner to protect the insulation for direct burial applications. Alternatively, if awarded, a deductive alternate bid item will replace the pre-installed urethane foam insulation with 2-inch thick field-installed rigid cellular glass insulation with protective jacketing. Details of the insulation are included in Section 2.5. ## 2.2 FACTORY-ASSEMBLED PRODUCTS A. Standardization of components shall be maximized to reduce spare part requirements. The contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly. ## 2.3 LIFTING ATTACHMENTS A. Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load. # 2.4 POLYVINYL CHLORIDE PIPE AND FITTINGS - A. PVC, Schedule 80 Pipe: ASTM D1785. - 1. PVC, Schedule 80 Socket Fittings: ASTM D2467. - 2. PVC, Schedule 80 Threaded Fittings: ASTM D2464. - B. PVC, AWWA Pipe: AWWA C900 and Class 200 with bell end with gasket, and with spigot end. - 1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern. - a. Glands, Gaskets, and Bolts: AWWA Clll, ductile- or gray-iron glands, rubber gaskets, and steel bolts. #### 2.5 PIPE INSULATION - A. Insulation shall be factory-installed and consist of a rigid 90% to 95% closed cell polyurethane with a nominal 2.0 lb/ft³ density and a coefficient of thermal conductivity (K) of 18 Btu-in/hr-ft². The insulation shall be protected by an ASTM 1784 PVC jacket with a minimum wall thickness of 0.060 inches, and shall be rated for direct burial use. The exposed ends of the insulation shall be sealed to prevent moisture intrusion. Insulation splices, approved by the pipe manufacturer, shall be installed at all joints. In all cases, installation shall follow manufacturer's recommendations. - B. Alternatively, if the deductive alternate bid item is awarded, rigid cellular glass insulation with protective jacketing will be substituted in place of the factory-installed polyurethane insulation. The rigid cellular glass insulation shall consist of a 2-inch thick layer of Pittsburgh Corning Foamglass 100% rigid cellular glass, jacketed with Pittsburgh Corning Pittwrap CW jacketing or Pittwrap heat sealable jacketing. Fittings and all pipe joints are to be insulated with field cut Foamglass insulation, held in place with glass wrapped reinforced Pittcote 300, or rope stock tame, covered with Pittwrap jacketing strips, and then covered with a glove coat of Pittcote 300, all according to manufacturer's recommendations. ### 2.6 VALVES A. Gate Valves: AWWA C509, Non-rising Stem, Resilient Seat, 200 psi (1380 kPa). - 1. Valves 3 inches (75 mm) and larger: Resilient seat valve with grayor ductile iron body and bonnet; cast iron or bronze double-disc gate; bronze gate rings; non-rising bronze stem and stem nut. - 2. Interior and exterior coating: AWWA C550, thermo-setting or fusion epoxy. - 3. Underground valve nut: Furnish valves with 2 inch (50 mm) nut for socket wrench operation. - 4. Aboveground and pit operation: Furnish valves with hand wheels. - 5. End connections shall be mechanical joint. - 6. Valve Boxes: AWWA M44 with top section, adjustable extension of length required for depth of burial of valve, plug with lettering "CHILLED WATER," and bottom section with base that fits over valve and with a barrel. - 7. Operating Wrenches: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and socket matching valve operating nut. (Provide two wrenches for Project.) ## B. Butterfly Valves - 1. Rubber-Seated Butterfly Valve: AWWA C504. - a. Provide rubber seated butterfly valve cast or ductile iron body, groove end (Victaulic or equal), minimum pressure of 150 psi (1035 kPa). ## 2.7 CONCRETE VAULTS - A. Reinforced-concrete vault: ASTM C858, designed for AASHTO H20-44 load designation. - 1. Ladder: ASTM A36, steel or polyethylene-encased steel steps. - 2. Manhole Frame and Cover: ASTM A48, Class No. 35A minimum tensile strength, 24 inch (610 mm) minimum diameter, unless otherwise indicated on drawings. - 3. Alternately, Manhole Frame and Cover: ASTM A536, Grade 60-40-18, ductile iron, 24 inch (610 mm) minimum diameter, unless otherwise indicated on drawings. #### 2.8 WARNING TAPE A. Warning tape shall be standard, 4 mil. Polyethylene, 3 inch (76 mm) wide tape, detectable type, blue with black letters and imprinted with "CAUTION BURIED CHILLED WATER LINE BELOW". ## PART 3 - EXECUTION #### 3.1 PIPING APPLICATIONS - A. Use pipe, fittings, and joining methods for piping systems according to the following applications. - 1. Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated. - 2. Do not use flanges or unions for underground piping. - 3. Flanges, unions, grooved-end-pipe couplings, and special fittings may be used, instead of joints indicated, on aboveground piping and piping in vaults. - 4. Penetrations into vault will be PVC Schedule 80. - B. Underground water-service piping NPS 4 to NPS 12 shall be the following: - 1. PVC, AWWA Class 200 or AWWA C900 pipe. Joints shall be bell and spigot type sealed with elastomeric gaskets conforming to ASTM D3139. Couplings shall be able to withstand the same internal pressure and external loading as the pipe. PVC fittings will not be allowed. Ductile iron and cast iron fittings for use on PVC shall conform to AWWA C110 or C153. - C. Aboveground and vault piping NPS 4 to NPS 12 shall be the following: - 1. Ductile iron, grooved-end pipe; ductile iron, grooved-end appurtenances; and grooved joints. - 2. Schedule 40 galvanized steel pipe. ## 3.2 VALVE APPLICATIONS - A. Use mechanical-joint-end valves for NPS 3 (DN 80) and larger underground installation. Use grooved end valves for installation in vaults. - B. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply: - 1. Use the following for valves in vaults and aboveground: - a. Butterfly Valves with grooved ends # 3.3 PVC PIPE - A. PVC piping shall be installed in strict accordance with the manufacturer's instructions and AWWA C605. Place selected material and thoroughly compact to one foot above the top of the pipe. - B. Install Copper Tracer Wire, No. 14 AWG solid, single conductor, insulated. Install in the trench with piping to allow location of the pipe with electronic
detectors. The wire shall not be spiraled around the pipe nor taped to the pipe. ## 3.4 ANCHORAGE INSTALLATION - A. Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include: mechanical joint restraints. - B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches. Include anchorages for the following piping systems: - 1. Gasketed-Joint, PVC Water-Service Piping: According to AWWA M23. - C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices. ## 3.5 VALVE INSTALLATION A. Emergency Shutoff Valves: Install each underground valve with stem pointing up and with valve box. #### 3.6 TEMPORARY CHILLER APPLICATIONS - A. The Contractor shall furnish, install and operate temporary chillers at the locations indicated on plans. Temporary chillers shall be 200 ton units, load limited to 320 amps. The Contractor shall also provide any other items, including but not limited to pumps, hoses and electrical cabling, necessary for the fully functional operation of the system. The temporary chillers shall be delivered on-site, brought online, and demonstrated to be fully functional prior to commencing demolition of the existing chilled water system. The Contractor shall operate the temporary chillers until the new chilled water distribution system is installed and commissioned. - B. The Contractor shall be responsible for ensuring that the chillers are operational 24 hours a day/7 days a week. The Contractor shall provide 30 minute (maximum) response to the site in the event that a chiller goes offline. Downtime for maintenance and repairs are to be kept to an absolute minimum. ## 3.7 CONCRETE VAULT INSTALLATION A. Install concrete vaults according to ASTM C891. ## 3.8 CONNECTIONS A. Drawings indicate general arrangement of piping, fittings, and specialties. Install chilled water service lines to a point of connection within approximately 5 feet (1500 mm) outside of building(s), unless otherwise noted on the plans, to which service is to be connected and make connections thereto. If building services have not been installed provide temporary caps and mark for future connection. ## 3.9 FIELD QUALITY CONTROL - A. Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water. - B. Prior to final acceptance, provide a video record of all piping to show the lines are free from obstructions, properly sloped and joined. - C. Perform hydrostatic tests at not less than one-and-one-half times working pressure for two hours. - 1. Increase pressure in 50-psi (350-kPa) increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psi (0 kPa). Slowly increase again to test pressure and hold for 1 more hour. Maximum allowable leakage is 0.5 Gallons(1.89 L) per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits. - D. Prepare reports of testing activities. #### 3.10 IDENTIFICATION A. Install continuous underground warning tape directly over piping either 12 inches below finished grade, or under pavements 6 inches below top of subgrade. ## 3.11 CLEANING - A. Purge new chilled water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use. - B. Prepare reports of purging activities. --- E N D ---